משפט בלוך-לנדאו
באנליזה מרוכבת, משפטי בלוך-לנדאו הם משפטים בדבר פונקציה הולומורפית בעיגול היחידה המקיימת . המשפט הוא אחד השלבים המרכזיים בהוכחת משפט פיקארד הקטן. הם נקראים על שמם של המתמטיקאים אנדרי בלוך ואדמונד לנדאו.
משפט בלוך
[עריכת קוד מקור | עריכה]משפט בלוך - תהי פונקציה הולומורפית בעיגול היחידה המקיימת . אזי קיים קבוע כך שהפונקציה הפיכה בכדור הפתוח ברדיוס . כלומר, קיימת פונקציה הולומורפית כך ש- היא הזהות על כדור כנ"ל.
הקבוע האופטימלי שמקיים את משפט בלוך נקרא קבוע בלוך, וערכו לא ידוע עד היום. בכל זאת, ידוע חסם לא רע - .
משפט לנדאו
[עריכת קוד מקור | עריכה]משפט לנדאו (לעיתים גם משפט בלוך-לנדאו) - תהי פונקציה הולומורפית בעיגול היחידה המקיימת . אזי תמונת מכילה כדור ברדיוס חיובי .
הקבוע האופטימלי המקיים את משפט לנדאו נקרא קבוע לנדאו; ניתן להוכיח דיי בקלות כי , וטיעונים מסובכים יותר מראים כי בערך. גם הערך של לא ידוע.
משפט ואלירון
[עריכת קוד מקור | עריכה]המשפט נקרא על שמו של המתמטיקאי הצרפתי ג'ורג ואלירון. משפט זה הביא את בלוך להוכיח את המשפט בנוסח לעיל.
משפט ואלירון - אם פונקציה שלמה לא קבועה, אז קיים עיגול ופונקציה אנליטית כך ש-.
למעשה, משפט ואלירון מתאים למשפט בלוך, לפי עקרון בלוך.
יישומים
[עריכת קוד מקור | עריכה]במשפט פיקארד הקטן יש שימוש במסקנה ממשפט בלוך-לנדאו:
משפט: אם פונקציה שלמה לא קבועה, אז תמונתה מכילה עיגול ברדיוס 1.
הוכחה: לא קבועה, תהי עבורה . נגדיר . אז מקיימת את תנאי משפט לנדאו, ולכן מכילה כדור ברדיוס , ולכן מתקיים הדרוש.
ראו גם
[עריכת קוד מקור | עריכה]קישורים חיצוניים
[עריכת קוד מקור | עריכה]- משפט בלוך-לנדאו, באתר MathWorld (באנגלית)