כדור (טופולוגיה)

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

במתמטיקה, במרחב מטרי, כדור הוא קבוצה המכילה את כל הנקודות שמרחקן מנקודה נתונה קטן ממספר קבוע.

לדוגמה:

מבחינה טופולוגית, כל כדור הוא סביבה של הנקודות שבתוכו.

כדור פתוח של מחוג r > 0 אשר מרכזו בנקודה p נכתב לרוב כ-.

דבר זה מוגדר כ:

כאשר d הוא פונקציית המרחק (מטריקה). ב-Rn, פונקציית המרחק האוקלידית הרגילה נתונה על ידי:

.

יש לשים לב שכדור פתוח תמיד מכיל את p וזאת כיוון ש r > 0.

כדורים לפי מטריקה d יוצרים בסיס לטופולוגיה המושרית על ידי d. כלומר, כל הקבוצות הפתוחות במרחב המטרי יכולות להיכתב כאיחוד של כדורים פתוחים.

אם סימן ה"קטן מ" (<) יוחלף על ידי "קטן שווה מ" (≤), יתקבל כדור סגור. הוא מסומן לרוב על ידי כלומר הוספת קו עליון ל-B (ראה סגור).

אם r = 1, אז הכדור נקרא כדור יחידה.

כדור יחידה n ממדי סגור מסומן בטופולוגיה כ-Dn.

קבוצה היא חסומה אם היא כלולה בתוך כדור. קבוצה היא חסומה כליל אם לכל רדיוס נתון, היא מכוסה על ידי מספר סופי של כדורים בעלי רדיוס זה.

בשם "ספירה" (Sphere) נהוג לכנות את השפה של הכדור, כלומר: כל הנקודות הנמצאות בדיוק במרחק r ממנו.

ראו גם[עריכת קוד מקור | עריכה]