משפט לגראנז' (תורת החבורות)

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

משפט לגראנז' הוא אחד המשפטים היסודיים בתורת החבורות הסופיות. המשפט קובע שאם חבורה סופית ו- תת חבורה שלה, אז הסדר של מחלק את הסדר של , כלומר הוא מספר שלם. המשפט נקרא על שם ז'וזף לואי לגראנז'.

מן המשפט אפשר מיד להסיק שהסדר של כל איבר בחבורה סופית מחלק את סדר החבורה (מכיוון שהחבורה הנוצרת על ידי x היא תת-חבורה, והסדר שלה שווה לסדר של x). במלים אחרות, אם חבורה סופית אז לכל . עובדה זו פותחת את האפשרות לנתח מבנה של חבורות סופיות באמצעות הסדרים של האיברים השונים. זוהי גם הוכחה כמעט מיידית למשפט אוילר.

אם חבורה אבלית, אז יש לה תת-חבורה מכל סדר המחלק את . תכונה זו, המהווה מעין היפוך של משפט לגראנז', אינה נכונה בחבורות כלליות - הדוגמה הקטנה ביותר היא חבורת התמורות הזוגיות , שהיא חבורה מסדר 12 ואין לה אף תת-חבורה מסדר 6.

לגראנז' פרסם את המשפט ב-1770, בעבודתו על שורשים של פולינומים, יותר ממחצית המאה לפני לידתה של תורת החבורות. באותו זמן, המשפט קבע שמספר הערכים השונים שאפשר לקבל מפונקציה של n משתנים על ידי החלפת המשתנים זה בזה מחלק תמיד את . הקשר לניסוח המודרני של המשפט הוא שקבוצת התמורות של משתני הפונקציה שאינם משנים אותה (הפונקציה סימטרית ביחס אליהן) היא תת-חבורה של החבורה הסימטרית של n משתנים (הכוללת איברים). מספר הפונקציות השונות המתקבלות מהפונקציה על ידי חילוף סדר המשתנים שווה לאינדקס של H בחבורה הסימטרית, .

הוכחת המשפט[עריכת קוד מקור | עריכה]

לצורך הוכחת המשפט נוכיח שני דברים - ראשית, שקבוצת כל המחלקות (קוסטים) השמאליות של מהווה חלוקה של , ושנית, שגודלה של כל מחלקה כזה שווה לסדר של .

לצורך הטענה הראשונה, די להראות שהקבוצות זרות זו לזו. אכן, אם אז , ומאידך אפשר לכתוב עבור , ולכן גם , כך ש- ולכן . כעת, אם , אז יש ולכן .

כעת נראה כי גודלה של כל מחלקה של שווה לסדר . לשם כך נבנה התאמה חד-חד ערכית מ על מחלקה כלשהי שלה.

ההתאמה תיבנה כך: .

נראה כי זו התאמה חד-חד ערכית: נניח כי אז ואחרי צמצום נקבל .

נראה כי זו התאמה על: יהי , אז על פי הגדרת המחלקה, ולכן .


על כן, הקבוצות ו- שקולות, כלומר .


כעת, לכל איבר ב ידוע שהוא שייך למחלקה כלשהי של . לכן מספר האיברים ב הוא סכום מספר האיברים בכל המחלקות של . יש מספר סופי של מחלקות, כי יש מספר סופי של איברים ב. יהי מספר המחלקות, אז , כלומר סדר מחלק את סדר ובכתיב מתמטי , כפי שהיה להוכיח.