משפט רליך-קונדרכוב

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

באנליזה פונקציונלית, משפט רליך-קונדרכוב הוא משפט לגבי שיכון קומפקטי (כלומר, שיכון רציף שהוא גם אופרטור קומפקטי) בין שני מרחבי סובולב. המשפט קרוי על שם המתמטיקאי האיטלקי-אמריקאי פרנץ רליך והמתמטיקאי הרוסי ולדימיר יוסיפוביץ' קונדרכוב.

ניסוח המשפט[עריכת קוד מקור | עריכה]

תהי קבוצה פתוחה, חסומה וליפשיצית ויהי .

נגדיר .

אזי מרחב הסובולב ניתן לשיכון רציף במרחב ה-Lp ולשיכון קומפקטי במרחב לכל .

כלומר, וגם .

תוצאות[עריכת קוד מקור | עריכה]

היות ששיכון הוא קומפקטי אם ורק אם אופרטור השיכון (הזהות) הוא אופרטור קומפקטי, נובע ממשפט רליך-קונדרכוב שלכל סדרה חסומה במידה שווה במרחב קיימת תת-סדרה המתכנסת במרחב . המסקנה הזאת ידועה כמשפט הבחירה של רליך-קונדרכוב.

משפט רליך-קונדרכוב שימושי להוכחת אי-שוויון פואנקרה[1] לפיו לכל (כאשר עומד בתנאי משפט רליך-קונדרכוב) מקיים:

כאשר הקבוע C תלוי רק בערך p ובתכונות הגאומטריות של וכן

הוא הערך הממוצע של u בתחום .

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ Evans, Lawrence C. (2010). "§5.8.1". Differential Equations, Partial (מהדורה שנייה). עמ' 290. ISBN 0-8218-4974-3.