פונקציה רציונלית

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

פונקציה רציונלית היא פונקציה שניתנת להבעה כמנת פולינומים.

קבוצת הפונקציות הרציונליות היא שדה השברים של חוג הפולינומים.

הגדרה פורמלית[עריכת קוד מקור | עריכה]

נאמר שפונקציה רציונלית אם היא מהצורה כאשר ו- הן פולינומים כך של- יש לפחות מקדם אחד שונה מ-. הפונקציה מוגדרת בכל נקודה בה שונה מאפס.

פונקציה רציונלית היא מקרה פרטי של העתקה רציונלית.

דוגמאות[עריכת קוד מקור | עריכה]

הפונקציה היא פונקציה רציונלית, ולעומת זאת אינה פונקציה רציונלית, משום שלא ניתן לבטא אותה כמנת פולינומים, גם איננה רציונלית (היא לא פולינום כי המעריכים של אינם שלמים).

נגזרת של פונקציה רציונלית[עריכת קוד מקור | עריכה]

תהיינה גזירות כאשר . את הנגזרת של הפונקציה הרציונלית מקבלים על די הנוסחה .

אסימפטוטות[עריכת קוד מקור | עריכה]

Postscript-viewer-shaded.png ערך מורחב – אסימפטוטה

בניגוד לפונקציה ללא מנה כמו פונקציית פולינום, או פונקציית שורש ללא מנה, בפונקציות עם מנה ייתכנו אסימפטוטות, שהן ישרים אליהן הפונקציה שואפת להגיע, כאשר או .

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא פונקציה רציונלית בוויקישיתוף
P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.