אסימפטוטה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
גרף הפונקציה y=1/x, שבו נוצרות שתי אסימפטוטות: לקו y = 0 ולקו x = 0
גרף הפונקציה y = 1/x + x שבו נוצרות שתי אסימפטוטות: לציר ה-Y ולישר y=x

באנליזה, אסימפטוטה של פונקציה ממשית היא קו ישר המתקרב לגרף הפונקציה באופן כזה שהמרחק ביניהם שואף לאפס כאשר מתרחקים מראשית הצירים לאינסוף. באופן כללי יותר, אומרים ששתי עקומות מתקרבות זו לזו באופן אסימפטוטי אם המרחק ביניהן שואף לאפס.

קו ישר כאסימפטוטה[עריכת קוד מקור | עריכה]

מקובל למיין את האסימפטוטות של הגרף \ y=f(x) לשלושה טיפוסים.

  • אסימפטוטה אנכית: זוהי אסימפטוטה מהצורה \ x=a, כאשר הפונקציה f שואפת לאינסוף או למינוס אינסוף, מימין או משמאל (או משני הצדדים), בנקודה a. לדוגמה, הישר x=0 הוא אסימפטוטה של ההיפרבולה  \ y=\frac{1}{x}, וגם של הפונקציה \ y=\log(x), המוגדרת רק מימין לאסימפטוטה. לעומת זאת, לפונקציה \ y=\sqrt{x} אין אסימפטוטה אנכית.
  • אסימפטוטה אופקית היא אסימפטוטה מהצורה \ y=b, כאשר הפונקציה שואפת ל-b עבור x השואף לאינסוף או למינוס אינסוף. לדוגמה, y=0 היא אסימפטוטה של ההיפרבולה שהוזכרה לעיל, וגם של הפונקציה \ y=\frac{x}{x^2+1}.

בפונקציות רציונליות, מהצורה \ \frac{P_m}{Q_n}=\frac{ax^m+...}{bx^n+...} ניתן לחשב את האסימפטוטה האופקית/משופעת באופן הבא:

טבלה המתארת את סוגי האסימפטוטות עבור פונקציות רציונליות
דוגמת אסימפטוטה אסימפטוטות יחס חזקה
\frac{1}{x^2+1}, y=0 y = 0 m < n
\frac{2x^2+7}{3x^2+x+12}, y=\frac{2}{3} חלוקת המקדמים של הדרגה הכי גבוהה y= \frac{a}{b} m = n
\frac{x^2+x+1}{x}, y=x+1 y = המנה לאחר ביצוע חילוק פולינומים m = n + 1
אין, \frac{2x^4}{3x^2+1} אין m > n + 1
  • אסימפטוטה משופעת היא ישר מהצורה  y=ax+b, כאשר הגבול של ההפרש \ f(x)-(ax+b) הוא אפס עבור x השואף לאינסוף או למינוס אינסוף. זוהי הכללה של הטיפוס האופקי, המתקבל כאשר פרמטר השיפוע הוא a=0. כדי לאתר אסימפטוטה כזו, אפשר לבחון את הגבול של \ \frac{f(x)}{x}, או (אם הפונקציה גזירה) של \ f'(x); אם הגבולות קיימים, ערכם הוא מקדם שיפוע אפשרי של האסימפטוטה. לאחר שחושב a, אפשר למצוא את b על ידי חישוב הגבול של ההפרש f(x)-ax.

את האסימפטוטה האנכית לא ניתן לחתוך ואילו את האסימפטוטות האופקיות והמשופעות ניתן לחתוך, אך באינסוף ובמינוס אינסוף הפונקציה חייבת לשאוף לאסימפטוטה.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]