פונקציית הערך השלם

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, פונקציית הערך השלם (נקראת גם פונקציית רִצפה) היא פונקציה המחזירה לכל מספר ממשי x את המספר השלם הגדול ביותר שקטן או שווה ל-x (מעגלת כלפי מטה). פונקציה זו מסומנת \lfloor x \rfloor, \ [x] או (x)‏floor. דוגמאות: \lfloor 2.7 \rfloor = 2, \lfloor -2.1 \rfloor = -3, \lfloor -2 \rfloor = -2.

במדעי המחשב הפונקציה נקראת Trunc, קיצור של Truncate. רמז לתיאור הציורי שלה כפונקציה שלוקחת מספר ממשי ו"מקצצת" את החלק השברי שלו ומשאירה רק את החלק השלם, כלומר מעגלת כלפי מטה (פונקציית רצפה). כאשר משתמשים במונח "פונקציית הערך השלם" סתם מבלי לפרט מתכוונים לפונקציית הרצפה. כאשר מתכוונים לפונקציית התקרה (שמעגלת כלפי מעלה) מציינים זאת במפורש.

תכונות[עריכת קוד מקור | עריכה]

הגרף של פונקציית הערך השלם (פונקציית רצפה)
  • לכל x ממשי הפונקציה מקיימת:
\lfloor x \rfloor \le x < \lfloor x \rfloor +1
כאשר השוויון באגף שמאל מתקיים אם ורק אם x שלם.
\lfloor x + n \rfloor = \lfloor x \rfloor + n
  • עיגול למספר השלם הקרוב ביותר ל-x ניתן על ידי הנוסחה \lfloor x + 0.5 \rfloor.

פונקציית תקרה[עריכת קוד מקור | עריכה]

הגרף של פונקציית תקרה

פונקציית התקרה מחזירה לכל מספר ממשי x את המספר השלם הקטן ביותר שגדול או שווה ל-x. הפונקציה מסומנת \lceil x \rceil או (x)‏ceiling. ניתן לתאר את פונקציה התקרה כך:

 \lceil x \rceil=\min\,\{n\in\mathbb{Z}\mid n\ge x\}

דוגמאות: \lceil 2.7 \rceil = 3, \lceil -2.1 \rceil = -2, \lceil -2 \rceil = -2.

הקשר בין פונקציית הרצפה לבין פונקציית התקרה ניתן על ידי הנוסחה \lceil x \rceil = - \lfloor - x \rfloor.

לכל k שלם מתקיים: \lfloor k / 2 \rfloor + \lceil k / 2 \rceil = k.

לכל k מספר ממשי מתקיים: \lfloor k \rfloor \le k \le \lceil k \rceil.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא פונקציית הערך השלם בוויקישיתוף