קירוב היקל

מתוך ויקיפדיה, האנציקלופדיה החופשית

קירוב היקל (Hückel method) או שיטת אורביטלים מולקולריים של היקל (HMO), על שמו של אריך היקל (Erich Hückel) היא שיטת צירוף ליניארי של אורביטלים אטומיים לאורביטלים מולקולריים (LCAO MO) הבסיסית ביותר. שיטה זו מאפשרת חישוב אנרגיות של אורביטלים מולקולריים של קשר פאי במערכות פחממנים מצומדות, כגון אתילן (Ethylene), בנזן (Benzene) ובוטאדיאן (1,3-Butadiene). שיטה זו מהווה בסיס תאורטי לכלל היקל. בהמשך, השיטה הורחבה למערכות מצומדות הטרואטומיות[1], למשל פירידין (Pyridine), פירול (Pyrrole) ופוראן (Furan) [2].
אמנם, בכימיה הקוונטית קיימות שיטות חישוב מתקדמות הרבה יותר, אך חשיבות מודל היקל היא דידאקטית ותיאורו מופיע בספרי כימיה קוונטית כאחת מאבני הדרך לשיטות מתקדמות יותר[3].

מבוא ומאפייני השיטה[עריכת קוד מקור | עריכה]

Math.svg
יש לפשט ערך זה: הערך מנוסח באופן טכני מדי, וקשה להבנה לקהל הרחב.
יש להוסיף מבוא אינטואיטיבי שיסביר את הרעיונות והמושגים בצורה פשוטה יותר, רצוי בליווי דוגמאות. אם אתם סבורים כי הערך אינו ברור דיו או שיש נקודה שאינכם מבינים בו, ציינו זאת בדף השיחה שלו. יש לציין כי ערכים מדעיים רבים מצריכים רקע מוקדם.

הנחת היסוד של השיטות סמי-אמפיריות המוקדמות הייתה כי אלקטרוני ה- וה- מופרדים לחלוטין. זהו רק מודל מקורב ועל מגבלותיו יורחב בהמשך. ההצדקה לקירוב זה מבוססת על העובדה כי אורביטלי ה- וה- הם בעלי סימטריה שונה. הטיפול ב- האלקטרוני ה- של המערכת מתבצע באמצעות ההמילטוניאן הבא (הכתוב ביחידות אטומיות):

כאשר
ו- הוא פוטנציאל אפקטיבי של אלקטרון ה- הנובע מגרעינים ואלקטרוני ה-.
מכאן, בשיטת היקל מזניחים את הדחיה הבין אלקטרונית () בהמילטוניאן עצמו, כך שההמילטוניאן של מערכת ה- הוא סכום המילטוניאנים חד אלקטרוניים:
כיוון שההמילטוניאן הוא סכום המילטוניאנים החד-אלקטרוניים, ניתן להפריד בין משתנים. כלומר, אורביטלים מולקולריים מקיימים
והאנרגיה של מערכת ה- ניתנת על ידי
יש לשים לב, כי שיטת היקל לא מציינת במפורש את צורתו של , במקום זאת היא מספקת כללים לבנייתו, אשר מתוארים בהמשך.
קירוב נוסף הוא פריסה של באמצעות בסיס אטומי מינימלי (מכאן סיווג השיטה LCAO MO) בצורה הבאה:
כאשר הוא אורביטל אטומי מסוג ו- הוא מספר הפחמנים במולקולה. המקדמים מתקבלים בתהליך מינימיזציה על אינטגרל הוריאציה.
נסכם את מאפייני השיטה:

  • בדרך כלל השיטה מוגבלת למערכות מצומדות.
  • כפי שתואר לעיל, השיטה מטפלת רק באלקטרוני ה-.
  • השיטה לא לוקחת בחשבון את הגאומטריה של המולקולה אלא רק את יחסי שכן קרוב/רחוק כפי שיתואר בהמשך.
  • השיטה מוגבלת למערכות מישוריות.

פיתוח שיטת היקל[עריכת קוד מקור | עריכה]

על פי עקרון הווריאציה אנרגיית מצב יסוד מקיימת את אי-השוויון הבא:

כאשר היא פונקציית הווריאציה. כלומר, ערך תצפית סביב המילטוניאן של פונקציית וריאציה כלשהי יהיה תמיד חסם עליון לאנרגיית מצב יסוד.

בשיטת היקל נציב את:

בתור פונקציית הווריאציה ונחשב את אנרגיית הווריאציה:
נדרשת להיות מנורמלת. כעת, ניתן לבצע מינימיזציה של , למשל, לפי המקדמים , כך שעבור כל מתקבל:
וזה מוביל למערכת של משואות סקולריות מהצורה:
במשואות אלה, אנרגיה והמקדמים הם הנעלמים. ביחס לווקטור המקדמים, זוהי מערכת משוואות הומוגנית וקיים פתרון לא טריויאלי אם ורק אם הדטרמיננטה מתאפסת, כלומר כאשר:
קיימים ערכי , אשר מקיימים את המשוואה (שורשי המשוואה). הערך הקטן ביותר מקבוצת הפתרונות זהו הקירוב הטוב ביותר לאנרגיית מצב היסוד במסגרת שיטת היקל. שאר הערכים של האנרגיות הם הערכה לאנרגיות מצבים המעוררים.

ניתן לקבוע את על ידי קביעת וקטור המקדמים המתאימים .

רכיבי מטריצה המייצגת המילטוניאן ואינטגרלי החפיפה[עריכת קוד מקור | עריכה]

כפי שצוין קודם, שיטת היקל לא מציינת במפורש את צורתו של . פתרון הבעיה המנוסחת לעיל כרוך בבניית מטריצה מייצגת של המילטוניאן בבסיס של אורביטלים אטומיים. כלומר יש לחשב את רכיבי המטריצה . בנוסף, יש לחשב את אינטגרלי החפיפה .

שיטת היקל מספקת כללים פשוטים לקביעת הרכיבים לעיל.

  • מודל היקל מניח כי הוא זהה לכל הפחמנים במולקולה. נשים לב, כי זהו ערך תצפית לאנרגיה של אורביטל אטומי. ערך זה ניתן לקירוב על ידי אנרגיית יוניזציה והוא זה שיקבע את סקאלת האנרגיה במערכת. נתון זה נמדד אמפירית, מכאן האופי הסמי-אמפירי של השיטה.
  • ערכיהם של האלמנטים מחוץ לאלכסון הראשי נקבעים באופן הבא:
    כאן ההנחה היא כי החפיפה בין האורביטלים של שכנים רחוקים (פחמנים אשר לא קשורים זה לזה) קטנה, לכן ניתן להזניח את רכיבי המטריצה כאשר מדובר באורביטלים של פחמנים לא שכנים.
  • בדומה לרכיבי מטריצה המייצגת המילטוניאן, רכיבי מטריצת החפיפה הם:
    כאשר היא הדלתא של קרונקר. במילים אחרות, מטריצת החפיפה היא מטריצת היחידה. הפירוש הפיזיקאלי של הנחה זו היא כי אורביטלים אטומיים על פחמנים שונים אינם חופפים כלל. ברוב המקרים הנחה זו אינה מתקיימת, כמובן. מסירים הנחה זו בשיטת היקל המורחבת (Extended Hückel method).

מהכללים לעיל ברור מדוע בשיטת היקל רק מפת הקשרים חשובה ולא הגאומטריה המרחבית של המולקולה. בנוסף, ברור כעת מדוע המודל (הלא מורחב) מוגבל למערכות מישוריות. אילו הגאומטריה אינה מישורית, מטריצת החפיפה אינה יכולה להיות מקורבת באמצעות מטריצת היחידה, כי אכן תהיה חפיפה.

תוצאות חישוב בשיטת היקל - בוטאדיאן[עריכת קוד מקור | עריכה]

ניתן לראות בתמונה את האורביטלים המאוכלסים והריקים של המולקולה.
אורביטלים מולקולרים של בוטאדיאן

טיפול בשיטת היקל במולקולת בוטאדיאן: פונקציית הגל של אלקטרוני ה- היא צירוף ליניארי של ארבעה אורביטלים אטומיים ומקדמי הצירוף הם .

המשוואה הסקולרית:

אשר מובילה ל-
כך שאנרגיות האורביטליות הן:

ראו גם[עריכת קוד מקור | עריכה]

לקריאה נוספת[עריכת קוד מקור | עריכה]

  • Ira N.Levine, Quantum Chemistry, Prentice-Hall, 5, 2000

קישורים חיצוניים[עריכת קוד מקור | עריכה]

  1. N. Goudard, Y. Carissan, D. Hagebaum-Reignier, S. Humbel (2008). "HuLiS : Java Applet – Simple Hückel Theory and Mesomery – program logiciel software" (בצרפתית). בדיקה אחרונה ב-19 באוגוסט 2010. 

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ בהקשר של מולקולות אורגניות, האטום שאינו פחמן קרוי הטרואטום (Heteroatom).
  2. ^ Andrew Streitwieser, Molecular Orbital Theory for Organic Chemist, Wiley, New York, 1961
  3. ^ Ira N.Levine, Quantum Chemistry, Prentice-Hall, 5, 2000, פרק 16