שיחה:משוואה ממעלה שנייה

    מתוך ויקיפדיה, האנציקלופדיה החופשית

    ראוי לציין[עריכת קוד מקור]

    שהנוסחה לא עובדת מעל שדה מממאפיין 2.

    כל הכבוד על כתיבת ההוכחה! זה אפילו לא מופיע בגירסה האנגלית

    איך הגיעו אל הנוסחה[עריכת קוד מקור]

    ההוכחה אכן מאוד יפה אך היא לא מציגה את הדרך שבה הגיעו אל הנוסחה. אני אציג אותה פה ואשמח אם תערכו זאת לערך על פי הסגנון של ויקיפדיה.

    הערה:
    אין לי דרך לעשות קו שבר, ואי לכך במקומו אשים את הסימן ^, ולפני ואחרי השבר אשים את הסימן #.

    משוואה ריבועית תמיד נראית כך:

    מוציאים גורם משותף a (מחלקים את כל המשווה ב-a):

    מכאן שמו לב לדמיון - איברים a ו-b הם חלק מנוסחת הכפל המקוצר של


    ומכאן לקחו את האיבר השלישי, שלא מופיע במשוואה הריבועית. ומכאן אפשר לכתוב:

    נחלק את המשוואה ב-A:

    ננסה לבודד את X:

    נפתור את צד ימין של המשוואה:

    נוציא שורש מהמשוואה (√=שורש):

    נחסר מהמשוואה #b^2a#:

    וכך הגיעו לנוסחה.
    (=
    ינון. שכתבתי לך את זה וחסרה לך שורה

    הערה להודעה שכתבתי למעלה:[עריכת קוד מקור]

    על מנת לראות מסודר את הטקסט תעשו עריכה ותלחצו על קונטרול שמאל ואלט שמאל (Ctrl+Alt).

    בבקשה ליישם את השינוי![עריכת קוד מקור]

    אני השקעתי ועמלתי עליו. עבר הרבה זמן מאז שכתבתי אותו.

    אנחנו לא נוהגים להכניס פירוט כזה לגוף הערכים, הדרך להגעה לנוסחה הזו אינה מהותית לקורא, השימוש בה חשוב יותר. אתה כמובן מוזמן להרחיב את הערך באופנים אחרים. ‏odedee שיחה 18:05, 29 במאי 2007 (IDT)[תגובה]

    לי נראה[עריכת קוד מקור]

    שמאוד חשוב לדעת איך הגיעו אליה. כמו שחשוב לדעת איך גילו את הד.נ.א. וכמו שחשוב לדעת איך גילו כל דבר. במיוחד במתמטיקה. אני מבין שבויקיפדיה מכניסים מספרים לא כטקסט ולא כתמונה; באיזו צורה? אני מוכן לעשות זאת בעצמי. 89.0.154.192 22:45, 19 ביוני 2007 (IDT) (שושו)[תגובה]

    1. אתה צודק בהחלט - הערכים צריכים להסביר, ולא רק לספר. במקרה הזה, ההוכחה כבר נמצאת בערך.
    2. מספרים נכנסים כטקסט. עבור נוסחאות משתמשים בפורמט TeX, באופן כזה:
    =<math>\ \frac{-b\pm \sqrt{b^2-4ac}}{2a}</math>. עוזי ו. 22:54, 19 ביוני 2007 (IDT)[תגובה]

    OK[עריכת קוד מקור]

    ואיך אני אמור להבין איך הקוד הזה פועל? חוץ מהפקודה MATH לא הבנתי בערך כלום.. 85.64.109.212 14:16, 2 ביולי 2007 (IDT)[תגובה]

    הקוד הזה הוא LaTex, זו שפה שלמה. אם אתה רוצה להרחיב את הערך, כדאי לקרוא את עזרה:נוסחאות. ‏odedee שיחה 01:27, 3 ביולי 2007 (IDT)[תגובה]

    תודה רבה![עריכת קוד מקור]

    בזמני הפנוי אערוך את הערך לפי השיטה הזאת. 82.166.247.46 11:27, 15 ביולי 2007 (IDT)[תגובה]

    משוב מ-3 בספטמבר 2012[עריכת קוד מקור]

    טעות בנוסחת הדיסקרימיננטה.

    הנוסחה השנייה, אשמח להבהרה[עריכת קוד מקור]

    האם מישהוא יכול להיכיח את הנוסחה השנייה? אשמח לעזרה בנושא תודה

    דיווח על טעות[עריכת קוד מקור]

    פרטי הדיווח[עריכת קוד מקור]

    יש את הנוסחה המקבילה (שרשמתם שמשתמשים בה בעיקר בתוכנות מחשב) והיא לא נותנת את אותה תוצאה. מהסתכלות על ויקיפדיה האמריקאית ועוד מקורות נוספים זה שימוש בשיטת "מולר" שהיא שיטה איטרטיבית למציאת שורשים.

    ההסבר עליה כאן לא מספיק, מבלבל ונקבל תוצאות לא נכונות כי צריך לרשום אותה בצורה איטרטיבית עד שנגיע ל0. והנוסחא המתוארות היא לא עבור מציאת x1,x2 בצורה של הצבת פרמטרים.

    נראה שהסיבה שמשתמשים בה במחשבים זה כי מחשב לא יכול לחשב שורש בצורה מדוייקת והוא צריך למצוא בקירוב והוא ישתמש בשיטה הזו כדי להגיע ל0, או קרוב מאוד ל0, וככה למצוא "בערך" שורשים למספרים שאין להם שורש עגול .

    מקור: https://en.wikipedia.org/wiki/Muller%27s_method

    דווח על ידי: Gal Abadi 31.154.17.58 13:04, 15 בינואר 2018 (IST)[תגובה]

    מתייג את עוזי ו. וMathKnight. Uziel302 - שיחה 09:42, 28 באפריל 2018 (IDT)[תגובה]
    הנוסחה שניתנה כאן כן נותנת אותה תוצאה, וזו אינה שיטת מולר. סידרתי. עוזי ו. - שיחה 20:45, 28 באפריל 2018 (IDT)[תגובה]


    טעות בהסבר על נוסחת השורשים ?[עריכת קוד מקור]

    בשורה השניה של ההסבר צריך להיות כתוב לדעתי "והוספת הדיסקרימיננטה לשני האגפים מביא את המשוואה לצורה ( 2ax + b ) בריבוע שווה לאפס" במקום סימון הדיסקרימיננטה