לדלג לתוכן

אידיאל (אלגברת לי)

מתוך ויקיפדיה, האנציקלופדיה החופשית

באלגברה מופשטת, אידיאל של אלגברת לי הוא תת-מרחב וקטורי שלה הסגור לפעולה. האידיאלים של אלגברת לי מקבילים לתת חבורות בתורת החבורות ולאידיאלים של חוגים, ומהווים מינוח בסיסי וחשוב בתורת המבנה של אלגברות לי.

הגדרה פורמלית

[עריכת קוד מקור | עריכה]

תהי אלגברת לי מעל שדה . תת-מרחב וקטורי של נקרא אידיאל אם מתקיים , או בשקילות . אם אידיאל של , מסמנים .

אלגברת לי נקראת פשוטה אם אין לה אידיאלים לא טריוויאליים.

  • מרחב האפס והמרחב כולו הם אידיאלים.
  • המרכז של אלגברת לי הוא אידיאל.
  • אידיאל של .
  • אם אידיאלים של גם סכומם אידיאל.

אלגברת המנה

[עריכת קוד מקור | עריכה]

באותו האופן בו בונים ממרחב מנה של מרחב וקטורי, או חוג מנה, אפשר לבנות גם אלגברת מנה של אלגברת לי באידיאל נתון שלה.

פורמלית, המרחב מסומן על ידי ; כקבוצה הוא שווה למרחב המנה (כמרחב וקטורי), והוא הופך להיות אלגברת לי עם הפעולה , שמוגדרת היטב.

לאחר הגדרה זו, אפשר להגדיר הומומורפיזם אלגברות לי (כך שישמור את הפעולה), ולהוכיח את משפטי האיזומורפיזם, בצורה אנלוגית לחלוטין לזו מתורת החוגים.

לקריאה נוספת

[עריכת קוד מקור | עריכה]
  • Introduction to Lie Algebras and Representation Theory, James Humphreys, 6-7