חבורת התמורות הזוגיות – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
אין תקציר עריכה
Yohai.bs (שיחה | תרומות)
תיקוני לינקים והרחבה קלה
שורה 1: שורה 1:
ב[[תורת החבורות]], '''חבורת התמורות הזוגיות''' הוא שמה של [[תת חבורה]] מסוימת וחשובה של [[החבורה הסימטרית]]. לכל [[מספר טבעי]] <math>\ n</math>, מחצית מבין <math>\ n!</math> ה[[תמורה (מתמטיקה)|תמורות]] בחבורה הסימטרית <math>\ S_n</math> הן בעלות [[סימן (תורת החבורות)|סימן]] <math>\ +1</math>, ומחצית הן בעלות סימן <math>\ -1</math>. הקבוצה של <math>\ \frac{n!}{2}</math> התמורות בעלות סימן חיובי היא תת חבורה מ[[אינדקס (תורת החבורות)|אינדקס]] 2 של <math>\ S_n</math>, שאותה מקובל לסמן באות <math>\ A_n</math>. בסימון זה משתמשים גם עבור הטיפוס של החבורה הסימטרית עצמה, בתור [[חבורת קוקסטר]].
ב[[תורת החבורות]], '''חבורת התמורות הזוגיות''' הוא שמה של [[תת חבורה]] מסוימת וחשובה של [[החבורה הסימטרית]]. לכל [[מספר טבעי]] <math>\ n</math>, מחצית מבין <math>\ n!</math> ה[[תמורה (מתמטיקה)|תמורות]] בחבורה הסימטרית <math>\ S_n</math> הן בעלות [[סימן (תורת החבורות)|סימן]] <math>\ +1</math>, ומחצית הן בעלות סימן <math>\ -1</math>. הקבוצה של <math>\ \frac{n!}{2}</math> התמורות בעלות סימן חיובי היא תת חבורה מ[[אינדקס (תורת החבורות)|אינדקס]] 2 של <math>\ S_n</math>, שאותה מקובל לסמן באות <math>\ A_n</math> (Alternating Group). בסימון זה משתמשים גם עבור הטיפוס של החבורה הסימטרית עצמה, בתור [[חבורת קוקסטר]].


כל תמורה אפשר לכתוב כמכפלה של [[חילוף (תורת החבורות)|חילופים]] (טרנספוזיציות). ניתן אמנם להציג תמורה נתונה כמכפלה של חילופים באופנים שונים, ומספרם של החילופים אינו בהכרח קבוע. עם זאת, ה'''זוגיות''' של מספר החילופים, כלומר השארית בחלוקה לשתיים, אינה משתנה. '''חבורת התמורות הזוגיות''' כוללת את התמורות שהן מכפלת [[מספר זוגי]] של חילופים. לדוגמה, היא כוללת את כל ה[[מחזור (תורת החבורות)|מחזורים]] באורך 3, בעלי הצורה <math>\ (abc)</math>. קבוצת המחזורים באורך 3 [[יוצרים של חבורה|יוצרת]] את <math>\ A_n</math>. אם <math>\ n\geq 4</math> אפשר ליצור את החבורה באופן דומה, על ידי התמורות מהצורה <math>\ (ab)(cd)</math> כאשר <math>\ a,b,c,d</math> שונים זה מזה.
כל תמורה ניתנת לכתיבה כמכפלה של [[תמורה (מתמטיקה)#סוגי תמורות|חילופים]] (טרנספוזיציות). ניתן אמנם להציג תמורה נתונה כמכפלה של חילופים באופנים שונים, ומספרם של החילופים אינו בהכרח קבוע. עם זאת, ה'''זוגיות''' של מספר החילופים, כלומר השארית בחלוקה לשתיים, אינה משתנה. חבורת התמורות הזוגיות כוללת את התמורות שהן מכפלת [[מספר זוגי]] של חילופים. מכיוון שסימן של מכפלת תמורות שווה למכפלת הסימנים (
<math>\ \mbox{sgn} (\tau\cdot\sigma)=\mbox{sgn}(\tau)\cdot \mbox{sgn}(\sigma)</math>
), מכפלה של תמורות זוגיות היא זוגית, ולכן אוסף התמורות הזוגויות מהווה חבורה.


לדוגמה, <math> \ A_n</math> כוללת את כל ה[[תמורה (מתמטיקה)#סוגי תמורות|מחזורים]] באורך 3, בעלי הצורה <math>\ (abc)</math>. קבוצת המחזורים באורך 3 [[חבורה (מבנה אלגברי)#יוצרים ויחסים|יוצרת]] את <math>\ A_n</math>. אם <math>\ n\geq 4</math> אפשר ליצור את החבורה באופן דומה, על ידי התמורות מהצורה <math>\ (ab)(cd)</math> כאשר <math>\ a,b,c,d</math> שונים זה מזה.
חשיבותן הרבה של החבורות <math>\ A_n</math> נובעת מכך שהן [[חבורה פשוטה|חבורות פשוטות]] לכל <math>\ n\geq 5</math>. בפרט, החבורה <math>\ A_5</math>, שסדרה 60, היא החבורה הפשוטה הקטנה ביותר. משפחה זו של חבורות פשוטות היא הראשונה שהתגלתה. שאר החבורות הפשוטות הסופיות, פרט ל-26 [[חבורה פשוטה ספורדית|החבורות הספורדיות]], הן חבורות של [[מטריצה|מטריצות]] מעל [[שדה סופי|שדות סופיים]].

חשיבותן הרבה של החבורות <math>\ A_n</math> נובעת מכך שהן [[חבורה פשוטה|חבורות פשוטות]] לכל <math>\ n\geq 5</math>. בפרט, החבורה <math>\ A_5</math>, שסדרה 60, היא החבורה הפשוטה הקטנה ביותר (שאינה [[חבורה ציקלית|ציקלית]]). משפחה זו של חבורות פשוטות היא הראשונה שהתגלתה. שאר החבורות הפשוטות הסופיות, פרט ל-26 [[משפט המיון לחבורות פשוטות סופיות#החבורות הספורדיות|החבורות הספורדיות]], הן חבורות של [[מטריצה|מטריצות]] מעל [[שדה סופי|שדות סופיים]]. העובדה שהחבורות <math> \ A_n</math> הן פשוטות לכל n > 4, משמשת, לדוגמא, בהוכחת אחד המשפטים המרכזיים ב[[תורת גלואה]] - שלא קיימת נוסחא כללית לפתרון [[פולינום]] מדרגה > 4.


מן העובדה ש-<math>\ A_n</math> פשוטה נובע שזוהי תת החבורה היחידה מאינדקס 2 של החבורה הסימטרית <math>\ S_n</math>; עובדה זו נכונה אפילו כאשר <math>\ n<5</math>. אם <math>\ n\geq 5</math> אז אין לחבורה הסימטרית אף תת חבורה אחרת מאינדקס <math>\ n\geq</math> (זוהי תוצאה של [[העידון של משפט קיילי]]). לעומת זאת, לחבורה <math>\ S_4</math> יש שלוש תת חבורות מאינדקס 3, שכולן איזומורפיות ל[[חבורה דיהדרלית|חבורה הדיהדרלית]] מסדר 8.
מן העובדה ש-<math>\ A_n</math> פשוטה נובע שזוהי תת החבורה היחידה מאינדקס 2 של החבורה הסימטרית <math>\ S_n</math>; עובדה זו נכונה אפילו כאשר <math>\ n<5</math>. אם <math>\ n\geq 5</math> אז אין לחבורה הסימטרית אף תת חבורה אחרת מאינדקס <math>\ n\geq</math> (זוהי תוצאה של [[העידון של משפט קיילי]]). לעומת זאת, לחבורה <math>\ S_4</math> יש שלוש תת חבורות מאינדקס 3, שכולן איזומורפיות ל[[חבורה דיהדרלית|חבורה הדיהדרלית]] מסדר 8.

גרסה מ־11:06, 9 באוגוסט 2007

בתורת החבורות, חבורת התמורות הזוגיות הוא שמה של תת חבורה מסוימת וחשובה של החבורה הסימטרית. לכל מספר טבעי , מחצית מבין התמורות בחבורה הסימטרית הן בעלות סימן , ומחצית הן בעלות סימן . הקבוצה של התמורות בעלות סימן חיובי היא תת חבורה מאינדקס 2 של , שאותה מקובל לסמן באות (Alternating Group). בסימון זה משתמשים גם עבור הטיפוס של החבורה הסימטרית עצמה, בתור חבורת קוקסטר.

כל תמורה ניתנת לכתיבה כמכפלה של חילופים (טרנספוזיציות). ניתן אמנם להציג תמורה נתונה כמכפלה של חילופים באופנים שונים, ומספרם של החילופים אינו בהכרח קבוע. עם זאת, הזוגיות של מספר החילופים, כלומר השארית בחלוקה לשתיים, אינה משתנה. חבורת התמורות הזוגיות כוללת את התמורות שהן מכפלת מספר זוגי של חילופים. מכיוון שסימן של מכפלת תמורות שווה למכפלת הסימנים ( ), מכפלה של תמורות זוגיות היא זוגית, ולכן אוסף התמורות הזוגויות מהווה חבורה.

לדוגמה, כוללת את כל המחזורים באורך 3, בעלי הצורה . קבוצת המחזורים באורך 3 יוצרת את . אם אפשר ליצור את החבורה באופן דומה, על ידי התמורות מהצורה כאשר שונים זה מזה.

חשיבותן הרבה של החבורות נובעת מכך שהן חבורות פשוטות לכל . בפרט, החבורה , שסדרה 60, היא החבורה הפשוטה הקטנה ביותר (שאינה ציקלית). משפחה זו של חבורות פשוטות היא הראשונה שהתגלתה. שאר החבורות הפשוטות הסופיות, פרט ל-26 החבורות הספורדיות, הן חבורות של מטריצות מעל שדות סופיים. העובדה שהחבורות הן פשוטות לכל n > 4, משמשת, לדוגמא, בהוכחת אחד המשפטים המרכזיים בתורת גלואה - שלא קיימת נוסחא כללית לפתרון פולינום מדרגה > 4.

מן העובדה ש- פשוטה נובע שזוהי תת החבורה היחידה מאינדקס 2 של החבורה הסימטרית ; עובדה זו נכונה אפילו כאשר . אם אז אין לחבורה הסימטרית אף תת חבורה אחרת מאינדקס (זוהי תוצאה של העידון של משפט קיילי). לעומת זאת, לחבורה יש שלוש תת חבורות מאינדקס 3, שכולן איזומורפיות לחבורה הדיהדרלית מסדר 8.

החבורות הקטנות

חבורת התמורות הזוגיות אינה פשוטה: יש לה סדרת ההרכב

.

חבורה זו מספקת את הדוגמה הנגדית הקטנה ביותר לכיוון ההפוך של משפט לגראנז': אין לה תת חבורה מסדר 6.

מבין הגופים האפלטוניים, חבורת התמורות של הטטרהדרון בן 4 הפאות המשולשות, שווה לחבורה . חבורות התמורות של הקוביה ושל האוקטהדרון בן 8 הפאות המשולשות איזומורפיות שתיהן לחבורה הסימטרית . המילטון הוכיח ב-1856 שחבורת תמורות של הדודקהדרון בן 12 הפאות המשולשות ושל האיקוסהדרון בן 20 הפאות המשולשות איזומורפית ל- .

לתאור גאומטרי זה של החבורות יש קשר הדוק להצגה שלהן לפי יוצרים ויחסים:

להשלמת התמונה, יש לציין כי החבורה אינסופית וגרף קיילי שלה קשור בריצוף המישור באמצעות משולשים ותריסריונים משוכללים.

בכמה מקרים אפשר להציג חבורה של תמורות זוגיות גם כחבורה של מטריצות מעל שדה סופי:

  • ,
  • ,
  • .

תבנית:נ