סוגרי אייברסון
במתמטיקה, סוגרי אייברסון (Iverson bracket), על שמו של המדען הקנדי קנת' אייברסון, הוא סימון המציין מספר ששווה לאחד אם תנאי מתקיים ואפס אחרת: כאשר P הוא פסוק לוגי שיכול להיות נכון או לא נכון. סימון זה הוכנס לשימוש על ידי קנת' אייברסון בתחילת שנות ה-60 בשפת התכנות שפיתח APL, והסוגריים המרובעים בסימון זה הוכנסו לשימוש על ידי דונלד קנות'.[1]
שימושים
[עריכת קוד מקור | עריכה]סוגרי אייברסון הופכים ערך בוליאני לערך מספרי באמצעות מיפוי טבעי , אשר מאפשר ספירה באמצעות סכימה. לדוגמה פונקציית אוילר הסופרת את המספרים החיוביים עד ל־n שהם מספרים זרים ל־n, ניתנת לכתיבה כך:
באופן כללי הסימון מאפשר להעביר תנאי קצה בסכימה (או באינטגרלים) כגורמים נפרדים בסכום, ולפנות מקום סביב סימן הסכימה, וחשוב מכך מאפשר לבצע מניפולציות אלגבריות. לדוגמה,
בסכום הראשון, האינדקס מוגבל לטווח שבין 1 לבין 10. בסכום השני, הסכימה היא על כל השלמים, אך כאשר i הוא קטן ממש מ־1 או גדול ממש מ־10, התוספת בסכימה היא 0, ולא תורמת לסכום. שימוש כזה בסוגרי אייברסון מאפשר מניפולציה פשוטה בביטויים כאלו.
מקרים מיוחדים
[עריכת קוד מקור | עריכה]הדלתא של קרונקר היא מקרה מיוחד של סוגרי אייברסון עבור תנאי שוויון:
פונקציה מציינת, שאותה מציינים לעיתים באמצעות , או ניתנת לסימון באמצעות סוגרי אייברסון עם סימון שייכות לקבוצה:
- .
ניתן להשתמש בסוגרי אייברסון לסימון פונקציית סימן ופונקציית מדרגה:
ביטויים של מקסימום ומינימום מבין שני מספרים:
סימון ערך מוחלט:
קישורים חיצוניים
[עריכת קוד מקור | עריכה]- סוגרי אייברסון, באתר MathWorld (באנגלית)
הערות שוליים
[עריכת קוד מקור | עריכה]- ^ Donald Knuth, Two Notes on Notation, American Mathematical Monthly, Volume 99, Number 5, May 1992, pp. 403–422.