פונקציה חד-חד-ערכית ועל

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
דוגמה לפונקציה חד-חד-ערכית ועל

במתמטיקה, פונקציה חד-חד-ערכית ועל היא פונקציה שמתקיימות בה שתי תכונות: היא פונקציה חד-חד-ערכית והיא פונקציה על. בניסוח פורמלי: פונקציה \ f:X\rarr Y, מהקבוצה X לקבוצה Y, היא חד-חד-ערכית ועל, אם לכל \ b\in Y קיים \ a\in X יחיד כך ש-\ f(a) = b. אם קיימת פונקציה כזו, הקבוצות "שקולות" והן בעלות אותה עוצמה. פונקציה היא חד-חד-ערכית ועל אם ורק אם היא הפיכה, ולכן יחס השקילות הזה בין קבוצות הוא יחס סימטרי.

אם על הקבוצות X,Y מוגדר מבנה נוסף (פעולות אלגבריות, טופולוגיה, מטריקה וכדומה), אז פונקציה חד-חד-ערכית ועל ביניהן השומרת על המבנה נקראת איזומורפיזם.

פונקציה חד-חד-ערכית ועל מקבוצה אל עצמה נקראת תמורה. אוסף התמורות על קבוצה X הוא חבורת הסימטריות של הקבוצה. לדוגמה, הפונקציה המתאימה לכל מספר שלם את העוקב שלו, היא תמורה על המספרים השלמים. פונקציות חד-חד-ערכיות ועל הן מאבני הבניין של צופנים סימטריים מודרניים רבים בקריפטוגרפיה.

P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.