משוואות פרנה-סרה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

בגאומטריה דיפרנציאלית, בהינתן עקומה במרחב האוקלידי התלת-ממדי בפרמטריזציה טבעית, משוואות פרנה-סרה (Frenet-Serret) הן משוואות דיפרנציאליות המתארות את השינוי של הווקטור המשיק לעקומה, הווקטור הנורמל לו והווקטור הבי-נורמל, כתלות בעקמומיות והפיתול של העקומה. חשיבותן של משוואות אלה היא שבהינתן תנאי התחלה ופונקציות עקמומיות ופיתול רגולריות, ניתן לשחזר את העקומה באופן גלובלי באמצעות פתרון המשוואות.

תהי עקומה רגולרית () וגזירה שלוש פעמים ברציפות בפרמטר הטבעי. נגדיר וקטור משיק על ידי

מכיוון שהעקומה נתונה בפרמטריזציה טבעית זהו וקטור יחידה, כלומר הנורמה או הגודל שלו שווה ל-1. כאן אין בחירה יחידה של וקטור נורמלי ולכן נגדיר את באופן הבא:

נשים לב שגם הוא וקטור יחידה. כאן, מגדירים את העקמומיות להיות

נשלים זוג וקטורים אלה לבסיס אורתונורמלי בעל בעל אוריינטציה חיובית (בעזרת כלל יד ימין) על ידי וקטור יחידה נוסף, הניצב לווקטור המשיק ולווקטור הנורמל שמוגדר על ידי

כלומר, על ידי מכפלה וקטורית של הווקטורים הקודמים. וקטור זה נקרא "בי-נורמל", וגם הוא וקטור יחידה.

משוואות פרנה טוענות ש-

כאשר היא העקמומיות ו- הוא הפיתול (גודל המודד כמה רחוקה העקומה מלהיות מישורית, עקומה עם פיתול אפס מוכלת כולה במישור דו-ממדי). זוהי מערכת משוואות דיפרנציאליות רגילות לינאריות ומסדר ראשון. נהוג להציג את המשוואות בצורה מטריציונית:

נשים לב שמטריצת המקדמים היא מטריצה אנטי-סימטרית. עובדה זו נכונה גם במקרה הכללי יותר.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא משוואות פרנה-סרה בוויקישיתוף