לדלג לתוכן

משפט גאוס-לוקאס

מתוך ויקיפדיה, האנציקלופדיה החופשית

באנליזה מרוכבת, משפט גאוס-לוקאס, הקרוי על שמם של קרל פרידריך גאוס ופליקס לוקאס, מספק יחס גאומטרי בין השורשים של פולינום P לשורשים של הנגזרת שלו . קבוצת השורשים של פולינום ממשי או מרוכב היא קבוצת נקודות במישור המרוכב. המשפט קובע כי כל השורשים של נמצאים בתוך הקמור של השורשים של P.

בין המסמכים שהותיר מאחוריו קרל פרידריך גאוס (1777 - 1855) נמצאה מחברת אשר הוא החל לכתוב בספטמבר 1813. בעמוד 76 במחברת הוא כתב את הטענה שנודעה כמשפט גאוס-לוקאס. מספר מכתבים שלו שנשלחו לשומאכר מעידים שהוא חשב על המשפט לראשונה ביוני 1836 ושהוא הכיר היטב את ההשלכות הנובעות ממנו. מאוחר יותר, פליקס לוקאס ניסח משפט דומה, אם כי בגרסה מעט חלשה יותר, במאמר מ-1868. המשפט נתגלה מחדש באופן בלתי תלוי על ידי Legebeke ב-1882, בעזרת שיקולים גאומטריים.

אם P הוא פולינום בעל מקדמים מרוכבים, כל האפסים של נמצאים בתוך המצולע הקמור הקטן ביותר המכיל את האפסים של P (במישור המרוכב).

מן המשפט היסודי של האלגברה, נובע כי ל-P קיים פירוק יחיד מעל שדה המספרים המרוכבים: , כאשר המספרים הם השורשים של P.

יהי Z מספר מרוכב עבורו . נבצע בפולינום נגזרת לוגריתמית ונקבל: . באופן ספציפי, אם Z הוא שורש של ועדיין , אז: או: . הביטוי האחרון יכול להיכתב גם כ-: . ניתן לראות כי Z הוא סכום משקלים בעל מקדמים חיוביים, או מרכז כובד של המספרים המרוכבים ולכן הוא נמצא בתוך המצולע הקמור הקטן ביותר המכיל את האפסים של P, מש"ל.

  • עמודים 91-92 ,Analytic Theory of Polynomials

קישורים חיצוניים

[עריכת קוד מקור | עריכה]
ויקישיתוף מדיה וקבצים בנושא משפט גאוס-לוקאס בוויקישיתוף