משפט קסורטי-ויירשטראס

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

משפט קסורטי-ויירשטראס הוא משפט מתמטי מתחום הפונקציות המרוכבות, הנותן מידע בדבר תמונת פונקציה הולומורפית בסביבה של נקודת סינגולריות עיקרית.

ניסוח[עריכת קוד מקור | עריכה]

תהי פונקציה הולומורפית בתחום , מלבד נקודת סינגולריות עיקרית אחת . אזי לכל סביבה של , הקבוצה צפופה במישור המרוכב. למעשה קובע המשפט כי תנאי זה שקול להיות נקודת סינגולריות עיקרית של .

משפט פיקארד מחזק את המשפט, וקובע שתמונת פונקציה הולומורפית בסביבה נקובה של נקודת סינגולריות עיקרית, היא לא רק צפופה אלא ממש שווה למישור המרוכב כולו פרט אולי לנקודה אחת.

הוכחה[עריכת קוד מקור | עריכה]

ההוכחה היא על דרך השלילה.

נניח בשלילה, שקיימת סביבה של הנקודה , בה אנליטית פרט לנקודת סינגולריות עיקרית , ו- לא צפופה במישור המרוכב.

כידוע, קבוצה היא צפופה במרחב אם ורק אם היא פוגשת כל קבוצה פתוחה. לכן, קיימים ו-, כך ש- (כאשר הוא כדור פתוח ברדיוס סביב הנקודה ). לכן, לכל , מתקיים , לכן . לכן, בקבוצה מוגדרת הפונקציה . מהגדרתה, הפונקציה אנליטית באופן מיידי בכל S פרט אולי ל-. באשר ל-,הפונקציה חסומה סביבה: , לכן נקודה סינגולרית סליקה של . לכן קיים , כך ש.

נפריד למקרים - אם , אז מכך ש- נקבל . אחרת, אם נקבל כי . שני המקרים מובילים לסתירה, שכן גבול הפונקציה בנקודה סינגולרית עיקרית לא קיים כלל.

דוגמה[עריכת קוד מקור | עריכה]

  • נביט בפונקציה האנליטית . ניתן לוודא על ידי פתרון ישיר, כי תמונת הפונקציה היא . תוצאה זו צפויה ממשפט פיקארד, שכן לא ייתכן שהנקודה 0 תתקבל, ולכן כל שאר הנקודות חייבות להתקבל. בפרט, התמונה ודאי צפופה ב-.

ראו גם[עריכת קוד מקור | עריכה]

משפטי פיקארד