לדלג לתוכן

פונקציית המשולש

מתוך ויקיפדיה, האנציקלופדיה החופשית

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

דוגמה לפונקציית המשולש

פונקציית המשולש היא פונקציה שהגרף שלה הוא בצורת משולש, פעמים רבות משולש שווה-צלעות שגובהו 1 ואורך בסיסו 2. פונקציית המשולש שימושית בעיבוד אותות ובהנדסת מערכות תקשורת, כמייצגת של אותות אידיאליים, שממנה ניתן לגזור פונקציות מציאותיות יותר. הפונקציה שימושית גם באפנון דופק מקודד כצורת דופק לשידור אותות דיגיטליים וכמסנן מתואם לקליטת האותות. היא משמשת גם להגדרת החלון המשולש (אנ').

הגדרה[עריכת קוד מקור | עריכה]

ההגדרה הנפוצה של פונקציית המשולש היא:

באופן שקול ניתן להגדיר את הפונקציה כקונבולוציה של שתי פונקציות מלבן זהות:

את פונקציית המשולש ניתן להציג גם כמכפלה של פונקציית המלבן ופונקציית הערך המוחלט:

פונקציית משולש חלופית

יש שמגדירים את פונקציית המשולש כבעל בסיס באורך 1 (במקום 2) כך:

ההגדרה הכללית של פונקציית המשולש היא:[1]

במסגרת הגדרה כללית זו, ההגדרה שבתחילת פרק זה היא מקרה פרטי:

כאשר , , .

סילום[עריכת קוד מקור | עריכה]

לכל פרמטר :

התמרת פורייה[עריכת קוד מקור | עריכה]

התמרת פורייה מוגדרת כדלקמן:

כאשר היא פונקציית ה-sinc המנורמלת.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ "Basic properties of splines and B-splines" (PDF). INF-MAT5340 Lecture Notes. p. 38.