מבחני התכנסות לטורים – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
שורה 94: שורה 94:
נביט ב[[הטור ההרמוני המתחלף|טור ההרמוני המתחלף]]: <math> \sum_{n=1}^\infty (-1)^n \cdot \frac{1}{n} </math>. הסדרה <math>\!\, \frac{1}{n} </math> היא סדרה חיובית מונוטונית יורדת לאפס, ולכן על פי מבחן לייבניץ, הטור מתכנס. כהערה צדדית נציין כי ניתן להוכיח שסכום טור זה הוא <math>\!\, -\ln 2 </math>.
נביט ב[[הטור ההרמוני המתחלף|טור ההרמוני המתחלף]]: <math> \sum_{n=1}^\infty (-1)^n \cdot \frac{1}{n} </math>. הסדרה <math>\!\, \frac{1}{n} </math> היא סדרה חיובית מונוטונית יורדת לאפס, ולכן על פי מבחן לייבניץ, הטור מתכנס. כהערה צדדית נציין כי ניתן להוכיח שסכום טור זה הוא <math>\!\, -\ln 2 </math>.


==[[מבחן דיריכלה|מבחן דיריכלה-זה קשההה]]==
==[[מבחן דיריכלה|מבחן דיריכלר הקשוח]] בהחלט==


תהי <math>\!\, a_n </math> סדרה מונוטונית ושואפת לאפס ותהי <math>\!\, b_n </math> סדרה שעבורה קיים מספר חיובי M כך שלכל N טבעי מתקיים <math> | \sum_{n=1}^N{b_n} | < M </math> . בתנאים אלה הטור <math> \sum_{n=1}^\infty a_n \cdot b_n </math> מתכנס.
תהי <math>\!\, a_n </math> סדרה מונוטונית ושואפת לאפס ותהי <math>\!\, b_n </math> סדרה שעבורה קיים מספר חיובי M כך שלכל N טבעי מתקיים <math> | \sum_{n=1}^N{b_n} | < M </math> . בתנאים אלה הטור <math> \sum_{n=1}^\infty a_n \cdot b_n </math> מתכנס.

גרסה מ־17:32, 3 בדצמבר 2017

במתמטיקה, ישנם מבחנים שמטרתם לבדוק האם טור אינסופי מתכנס למספר סופי. מבחנים אלו אינם מראים מהו סכום הטור, אלא רק מכריעים בשאלת ההתכנסות. ההגדרה הפורמלית להתכנסות טור היא שסדרת הסכומים החלקיים מתכנסת.

על התכנסות הטור משפיע רק זנבו, כלומר ניתן להוריד מספר סופי של איברים מתחילת הטור מבלי לשנות את התכנסותו (אך ייתכן שתוך שינוי של הסכום שאליו יתכנס). על כן אין צורך שדרישות המבחנים יתקיימו עבור כל אברי הטור, אלא רק עבור כל האיברים החל ממקום מסוים.

תנאי הכרחי להתכנסות טורים

תנאי הכרחי להתכנסות טורים הוא שהאיבר הכללי מתכנס ל-0 כאשר .

דוגמה

הטור הנו טור מתבדר מכיוון שהאיבר הכללי שלו אינו מתכנס ל-0.

התנאי אינו מספיק, כפי שמדגים הטור ההרמוני שמתבדר.

טורים חיוביים

טורים חיוביים, כלומר טורים שכל אבריהם לא שליליים, ניחנים בתכונה החשובה שסדרת הסכומים החלקיים שלהם היא סדרה מונוטונית עולה. מכיוון שכל סדרה מונוטונית עולה מתכנסת אם היא חסומה, כל שצריך להראות הוא שהסכומים החלקיים של הטור חסומים. עובדה זו מהווה בסיס למספר מבחנים. אם טור חיובי אינו חסום, הוא מתבדר לאינסוף.

מבחן ההשוואה

מבחן ההשוואה הוא הכלי הבסיסי לבחינת התכנסות טורים, ומסתמך על השוואת הטור הנבדק לטור אחר, שכבר ידוע עליו אם הוא מתבדר או מתכנס.

מבחן ההשוואה הראשון (הלא גבולי)

יהיו שני טורים אינסופיים. אם מתקיים החל ממקום מסוים , אז:

  • אם מתכנס, גם מתכנס; לכן גם:
  • אם מתבדר, גם מתבדר.

מבחן ההשוואה השני (הגבולי)

יהיו שני טורים חיוביים אינסופיים, שעבורם הגבול קיים. אז:

  • אם , הטורים מתכנסים או מתבדרים יחדיו.
  • אם , אם מתכנס אז מתכנס ואם מתבדר אז מתבדר (אבל ההפך אינו בהכרח נכון).
  • אם אם מתבדר אז מתבדר ואם מתכנס אז מתכנס (אבל ההפך אינו בהכרח נכון).

דוגמאות

נרצה לבדוק אם הטור האינסופי מתבדר או מתכנס. נערוך את מבחן ההשוואה עם הטור ההרמוני:

זאת בהתבסס על העובדה כי .

כעת ידוע כי הטורים מתבדרים ומתכנסים ביחד ומכיוון שהטור ההרמוני מתבדר, גם הטור שלנו מתבדר.

מבחן השורש של קושי

יהי טור חיובי אינסופי. נסמן .

  1. אם הטור מתכנס.
  2. אם הטור מתבדר.
  3. אם המבחן אינו מספק מידע על התכנסות או התבדרות הטור.

(למעשה, קיים ניסוח כללי יותר : אם קיים כך שכמעט לכל האיברים בסדרה מתקיים , אז הטור מתכנס).

מבחן המנה של ד'אלמבר

יהי טור חיובי אינסופי. נסמן .

  1. אם הטור מתכנס.
  2. אם הטור מתבדר.
  3. אם המבחן אינו מספק מידע על התכנסות או התבדרות הטור.

(למעשה, קיים ניסוח כללי יותר: אם קיים כך ש- כמעט לכל איברי הסדרה, אז הטור מתכנס, ואם כמעט לכל אברי הסדרה, אז הטור מתבדר).

מבחן השורש חזק יותר ממבחן המנה. כלומר - מבחן השורש מכריע עבור כל טור שעבורו מבחן המנה מכריע, אבל מבחן המנה לא בהכרח מכריע עבור כל טור שעבורו מבחן השורש מכריע. עם זאת, במקרים רבים נוח יותר להשתמש במבחן המנה מאשר במבחן השורש.

מבחן האינטגרל

יהי מספר טבעי ו- פונקציה חיובית מונוטונית יורדת המוגדרת בקטע (רציפה בקטע הנתון), אזי סכום הסדרה החיובית מתכנס אם ורק אם האינטגרל הוא סופי. בפרט, אם האינטגרל מתבדר אזי גם הטור מתבדר.

מבחן ראבה

יהי טור חיובי אינסופי. נסמן .

  1. אם הטור מתכנס.
  2. אם הטור מתבדר.
  3. אם המבחן אינו מספק מידע על התכנסות או התבדרות הטור.

מבחן זה הוא עידון של מבחן המנה, והוא עשוי להצליח במקום שמבחן המנה נכשל (למשל, בהוכחת ההתכנסות של הטור ).

מבחן העיבוי של קושי

תהא סדרה חיובית שיורדת מונוטונית לאפס, אז הטור מתכנס אם ורק אם מתכנס. בלשון ציורית: די להחליף כל קבוצה של איברים ב- מופעים של האיבר הראשון (או האחרון) בקבוצה. הטור שיתקבל מתכנס ומתבדר יחד עם הטור המקורי. לעתים נקרא גם מבחן הדילול.

דוגמאות

נוכיח כי הטור מתבדר. על פי מבחן העיבוי, טור זה מתכנס ומתבדר יחד עם הטור , ולאחר צמצום נקבל את הטור . כעת, באמצעות מבחן ההשוואה עם הטור שידוע כי הוא מתבדר, נסיים את ההוכחה.

טורים כלליים

התכנסות בהחלט

נאמר על טור שהוא מתכנס בהחלט אם הטור של ערכיהם המוחלטים של איבריו מתכנס. טור מתכנס בהחלט הוא טור מתכנס, ולכן אם נתון טור לא חיובי, ניתן לבדוק האם הוא מתכנס בהחלט תוך שימוש במבחני השוואה לטורים חיוביים (כי הטור של ערכיו המוחלטים הוא טור חיובי), ומכך להסיק על התכנסותו. טור שמתכנס אך אינו מתכנס בהחלט נקרא מתכנס בתנאי. לטורים מסוג זה קיימים מבחני התכנסות נוספים.

מבחן לייבניץ

תהי סדרה חיובית שיורדת מונוטונית לאפס. אזי הטור המתחלף שנוצר על ידה מתכנס.

זנב הטור, , קטן תמיד בערכו המוחלט מגודל האיבר הראשון בו. כלומר: . כמו כן מתקיים .

דוגמאות

נביט בטור ההרמוני המתחלף: . הסדרה היא סדרה חיובית מונוטונית יורדת לאפס, ולכן על פי מבחן לייבניץ, הטור מתכנס. כהערה צדדית נציין כי ניתן להוכיח שסכום טור זה הוא .

מבחן דיריכלר הקשוח בהחלט

תהי סדרה מונוטונית ושואפת לאפס ותהי סדרה שעבורה קיים מספר חיובי M כך שלכל N טבעי מתקיים . בתנאים אלה הטור מתכנס.

מבחן דיריכלה מכליל את מבחן לייבניץ מבחינת הוכחת התכנסות הטור (אך ללא הערכת גודל השארית שכלול במשפט לייבניץ) שכן מבחן לייבניץ הוא המקרה הפרטי של מבחן דיריכלה כאשר .

מבחן אבל

תהי סדרה מונוטונית חסומה ויהי טור מתכנס. אזי בתנאים אלה הטור מתכנס.

התכנסות של מכפלות אינסופיות

מכפלה אינסופית מתכנסת או מתבדרת יחד עם הלוגריתם שלה, שהוא הטור . יותר מזה, אם לכל n, אז אי-השוויון מראה שהמכפלה מתכנסת אם ורק אם הטור מתכנס. עובדות אלו מאפשרות להמיר שאלות על התכנסות של מכפלות, בשאלות על התכנסות של טורים.

ראו גם