קירוב ליניארי – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
מ Kotz העביר את הדף קירוב לינארי לשם קירוב ליניארי: החלטת אקדמיה + עדכון בוט ההחלפות
מ סקריפט החלפות (ליניארי, ,), הסרת קישורים עודפים
שורה 1: שורה 1:
[[קובץ:TangentGraphic2.svg|ממוזער|300px|הקו המשיק]]
[[קובץ:TangentGraphic2.svg|ממוזער|300px|הקו המשיק]]


'''קירוב לינארי''' או '''קירוב מסדר ראשון''' הוא מושג ב[[מתמטיקה]] המתאר [[קירוב]] של [[פונקציה]] מתמטית כלשהי באמצעות [[פונקציה ליניארית]] (ליתר דיוק, [[פונקציה אפינית]]). לקירובים ליניארים יש שימוש נרחב במדעים ובמתמטיקה כדי לקבל קירוב לערך הפונקציה בסביבה של ערך קבוע מראש. היות שפונקציות ליניאריות הן קלות לחישוב ולפתרון, קירובים ליניארים מועדפים כמעט תמיד בניתוחים אנליטיים ונומריים אם הם מספקים את הדיוק הנדרש.
'''קירוב ליניארי''' או '''קירוב מסדר ראשון''' הוא מושג ב[[מתמטיקה]] המתאר [[קירוב]] של [[פונקציה]] מתמטית כלשהי באמצעות [[פונקציה ליניארית]] (ליתר דיוק, [[פונקציה אפינית]]). לקירובים ליניארים יש שימוש נרחב במדעים ובמתמטיקה כדי לקבל קירוב לערך הפונקציה בסביבה של ערך קבוע מראש. היות שפונקציות ליניאריות הן קלות לחישוב ולפתרון, קירובים ליניארים מועדפים כמעט תמיד בניתוחים אנליטיים ונומריים אם הם מספקים את הדיוק הנדרש.


כאשר לפונקציה קיים קירוב לינארי, נאמר שהפונקציה [[דיפרנציאביליות|דיפרנציאבילית]].
כאשר לפונקציה קיים קירוב ליניארי, נאמר שהפונקציה [[דיפרנציאביליות|דיפרנציאבילית]].


==הגדרה==
==הגדרה==
בהינתן פונקציה <math>\ f</math> על מרחב [[מספר ממשי|הממשיים]] שהיא רציפה וגזירה ושנגזרתה רציפה גם היא בסביבה של <math>\ a</math>, מתקבל מ[[טור טיילור]] עבור <math>\ n=1</math> כי:
בהינתן פונקציה <math>\ f</math> על מרחב [[מספר ממשי|הממשיים]] שהיא רציפה וגזירה ושנגזרתה רציפה גם היא בסביבה של <math>\ a</math>, מתקבל מ[[טור טיילור]] עבור <math>\ n=1</math> כי:
<math display="block"> f(x) = f(a) + f'(a)(x - a) + R_2\ </math>
<math display="block"> f(x) = f(a) + f'(a)(x - a) + R_2\ </math>
כאשר <math>\ R_2</math> הוא איבר השארית המייצג את סכום האיברים מסדר גבוה יותר. קירוב לינארי, או קירוב מסדר ראשון, מתקבל על ידי השמטת השארית, כך שמתקבלת הנוסחה:
כאשר <math>\ R_2</math> הוא איבר השארית המייצג את סכום האיברים מסדר גבוה יותר. קירוב ליניארי, או קירוב מסדר ראשון, מתקבל על ידי השמטת השארית, כך שמתקבלת הנוסחה:
<math display="block"> f(x) \approx f(a) + f'(a)(x - a).</math>
<math display="block"> f(x) \approx f(a) + f'(a)(x - a).</math>


שורה 15: שורה 15:
למעשה הנוסחה שלעיל היא בדיוק משוואת ה[[משיק]] לגרף של הפונקציה <math>\ f</math> בנקודה <math>\ (a, f(a))</math>.
למעשה הנוסחה שלעיל היא בדיוק משוואת ה[[משיק]] לגרף של הפונקציה <math>\ f</math> בנקודה <math>\ (a, f(a))</math>.


ניתן לבצע קירוב לינארי לפונקציות [[מרחב וקטורי|וקטוריות]] [[דיפרנציאביליות]] באופן דומה<!-- , כאשר נקודת ההשקה תהא ב[[יעקוביאן]] של הפונקציה -->. לדוגמה, בהינתן פונקציה [[דיפרנציאביליות|דיפרנציאבילית]] <math>\ f(x, y)</math> על המספרים הממשיים, הקירוב הליניארי של <math>\ f(x, y)</math> עבור <math>\ (x, y)</math> קרובים ל-<math>\ (a, b)</math> נתון על ידי הנוסחה:
ניתן לבצע קירוב ליניארי לפונקציות [[מרחב וקטורי|וקטוריות]] [[דיפרנציאביליות]] באופן דומה<!--, כאשר נקודת ההשקה תהא ב[[יעקוביאן]] של הפונקציה -->. לדוגמה, בהינתן פונקציה דיפרנציאבילית <math>\ f(x, y)</math> על המספרים הממשיים, הקירוב הליניארי של <math>\ f(x, y)</math> עבור <math>\ (x, y)</math> קרובים ל-<math>\ (a, b)</math> נתון על ידי הנוסחה:
<math display="block">f\left(x,y\right)\approx f\left(a,b\right)+\frac{\partial f}{\partial x}\left(a,b\right)\left(x-a\right)+\frac{\partial f}{\partial y}\left(a,b\right)\left(y-b\right).</math>
<math display="block">f\left(x,y\right)\approx f\left(a,b\right)+\frac{\partial f}{\partial x}\left(a,b\right)\left(x-a\right)+\frac{\partial f}{\partial y}\left(a,b\right)\left(y-b\right).</math>


==דוגמה==
==דוגמה==
ניתן לחשב קירוב לערך <math>\sqrt[3]{25}</math> על ידי קירוב לינארי של הפונקציה <math> f(x)= x^{1/3}\,</math>, כלומר לחשב את הקירוב על ידי חישוב הערך <math>\ f(25)</math>.
ניתן לחשב קירוב לערך <math>\sqrt[3]{25}</math> על ידי קירוב ליניארי של הפונקציה <math> f(x)= x^{1/3}\,</math>, כלומר לחשב את הקירוב על ידי חישוב הערך <math>\ f(25)</math>.
# ראשית עלינו למצוא את הנגזרת הראשונה של הפונקציה:
# ראשית עלינו למצוא את הנגזרת הראשונה של הפונקציה:
#:<math>f'(x)=\frac{x^{-2/3}}{3}=\frac{1}{3\sqrt[3]{x^2}}</math>
#:<math>f'(x)=\frac{x^{-2/3}}{3}=\frac{1}{3\sqrt[3]{x^2}}</math>

גרסה מ־02:40, 2 במרץ 2018

הקו המשיק

קירוב ליניארי או קירוב מסדר ראשון הוא מושג במתמטיקה המתאר קירוב של פונקציה מתמטית כלשהי באמצעות פונקציה ליניארית (ליתר דיוק, פונקציה אפינית). לקירובים ליניארים יש שימוש נרחב במדעים ובמתמטיקה כדי לקבל קירוב לערך הפונקציה בסביבה של ערך קבוע מראש. היות שפונקציות ליניאריות הן קלות לחישוב ולפתרון, קירובים ליניארים מועדפים כמעט תמיד בניתוחים אנליטיים ונומריים אם הם מספקים את הדיוק הנדרש.

כאשר לפונקציה קיים קירוב ליניארי, נאמר שהפונקציה דיפרנציאבילית.

הגדרה

בהינתן פונקציה על מרחב הממשיים שהיא רציפה וגזירה ושנגזרתה רציפה גם היא בסביבה של , מתקבל מטור טיילור עבור כי:

כאשר הוא איבר השארית המייצג את סכום האיברים מסדר גבוה יותר. קירוב ליניארי, או קירוב מסדר ראשון, מתקבל על ידי השמטת השארית, כך שמתקבלת הנוסחה:

ככל ש- יהא קרוב יותר ל- כך שגיאת הקירוב תהא קטנה יותר שכן האיברים של החזקות הגבוהות יותר של ישאפו מהר יותר לאפס ויהיו זניחים ביחס לאיבר הליניארי ב- והאיבר הקבוע.

למעשה הנוסחה שלעיל היא בדיוק משוואת המשיק לגרף של הפונקציה בנקודה .

ניתן לבצע קירוב ליניארי לפונקציות וקטוריות דיפרנציאביליות באופן דומה. לדוגמה, בהינתן פונקציה דיפרנציאבילית על המספרים הממשיים, הקירוב הליניארי של עבור קרובים ל- נתון על ידי הנוסחה:

דוגמה

ניתן לחשב קירוב לערך על ידי קירוב ליניארי של הפונקציה , כלומר לחשב את הקירוב על ידי חישוב הערך .

  1. ראשית עלינו למצוא את הנגזרת הראשונה של הפונקציה:
  2. ואז לפי משוואת הקירוב הליניארי:

התוצאה המתקבלת, 2.926, קרובה למדי לערך האמיתי של המספר: 2.924. שגיאת הקירוב המוחלטת היא 0.002, ושגיאת הקירוב היחסית היא 0.0684%.

יישומים

ראו גם