גלגל מים – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
אין תקציר עריכה
אין תקציר עריכה
שורה 77: שורה 77:
{{הפניה לערך מורחב|ערכים=[[טחנת מים]], [[נוריה]]}}
{{הפניה לערך מורחב|ערכים=[[טחנת מים]], [[נוריה]]}}
כמו בכל המכונות, תנועה סיבובית יעילה יותר במכשירים להעלאת מים מאשר בתנודה.{{הערה|Oleson 2000, p. 229}} במונחים של מקור כוח, ניתן לסובב את גלגלי המים על ידי כוח אנושי בהתאמה של בעלי חיים או על ידי זרם המים עצמו. גלגלי מים מגיעים בשני עיצובים בסיסיים, מצוידים בציר אנכי או אופקי. את הסוג האחרון ניתן לחלק, בהתאם למקום בו המים פוגעים במשוטי הגלגל, למים המגיעים מעל לגלגל, למרכז הגלגל או לתחתית הגלגל. שני התפקידים ההיסטוריים העיקריים של גלגלי המים היו הרמת מים למטרות השקיה וטחינה, במיוחד של תבואה. במקרה של גלגל ציר אופקי, נדרשת מערכת גלגלי שיניים להעברת הכוח, אשר גלגלי ציר אנכי אינם זקוקים לה.
כמו בכל המכונות, תנועה סיבובית יעילה יותר במכשירים להעלאת מים מאשר בתנודה.{{הערה|Oleson 2000, p. 229}} במונחים של מקור כוח, ניתן לסובב את גלגלי המים על ידי כוח אנושי בהתאמה של בעלי חיים או על ידי זרם המים עצמו. גלגלי מים מגיעים בשני עיצובים בסיסיים, מצוידים בציר אנכי או אופקי. את הסוג האחרון ניתן לחלק, בהתאם למקום בו המים פוגעים במשוטי הגלגל, למים המגיעים מעל לגלגל, למרכז הגלגל או לתחתית הגלגל. שני התפקידים ההיסטוריים העיקריים של גלגלי המים היו הרמת מים למטרות השקיה וטחינה, במיוחד של תבואה. במקרה של גלגל ציר אופקי, נדרשת מערכת גלגלי שיניים להעברת הכוח, אשר גלגלי ציר אנכי אינם זקוקים לה.

===סין===
[[קובץ:Tiangong Kaiwu Chain Pumps.jpg|ממוזער|שמאל|220px|שני סוגים של [[משאבת שרשרת|משאבות שרשרת]] המונעות בעזרת [[הידראוליקה]] מה[[טיאנגונג קאיוו]] {{אנ|Tiangong Kaiwu}} משנת 1637, שנכתבו בתקופת [[שושלת מינג]] על ידי [[אנציקלופדיה|כותב האנציקלופדיות]], [[סונג יינגשינג]] (1587–1666).]]
גלגל המים הקדום ביותר שעובד כדוושה תואר על ידי [[ג'ואנג דזה]] בשלהי [[תקופת המדינות הלוחמות]] (476-221 לפנה"ס). כתוב שגלגל המים הומצא על ידי זיגונג, תלמידו של [[קונפוציוס]] במאה ה-5 לפני הספירה.{{הערה|[https://www.google.ca/books/edition/How_Water_Influences_Our_Lives/7teSDQAAQBAJ?hl=en&gbpv=1&dq=water+wheel+china+history&pg=PA139&printsec=frontcover How Water Influences Our Lives]. Springer. 22 November 2016. ISBN 9789811019388.}} לפחות עד המאה ה-1 לספירה, ה[[הרפובליקה העממית של סין|סינים]] של [[שושלת האן#שושלת האן המזרחית|שושלת האן המזרחית]] השתמשו בגלגלי מים כדי לרסק תבואה בטחנות וכדי להפעיל את [[מפוח]]י הבוכנה בחישול [[עפרת ברזל|עפרות ברזל]] ל[[יצקת|ברזל יצוק]].

בטקסט המכונה "שין לון" (Xin Lun), שנכתב על ידי [[הואן טאן]] {{אנ|Huan Tan}} בסביבות שנת 20 לספירה (במהלך גזילת [[ואנג מאנג, קיסר סין|ואנג מאנג]]), נקבע כי המלך המיתולוגי האגדי, הידוע בשם [[פו שי]], היה האחראי על המצאת העלי והמכתש, שהתפתחו לפטיש הטיה ולאחר מכן לפטיש טפיפה {{אנ|Trip hammer}}. למרות שהמחבר מדבר על פו שי המיתולוגי, קטע בכתיבתו נותן רמז לכך שגלגל המים היה בשימוש נרחב במאה ה-1 לספירה ב[[הרפובליקה העממית של סין|סין]] (כתיב [[וייד-ג'יילס]]):

<blockquote>פו שי המציא את העלי והמכתש, שהוא כל כך שימושי, ומאוחר יותר שופר בצורה חכמה, כך שניתן היה להשתמש בכל משקל הגוף לדריכה על הפטיש ההטיה (tui), ובכך להגדיל את היעילות פי עשרה. לאחר מכן כוחן של בעלי חיים - חמורים, פרדות, שוורים וסוסים - הופעל באמצעות מכונות, וכוח המים שימש גם לחבטות, כך שהתועלת גדלה פי מאה.{{הערה|Needham, p. 392}}</blockquote>

בשנת 31 לספירה, המהנדס וה[[פרפקט]] של מחוז [[נאניאנג]] {{אנ|Nanyang (region)}}, [[דו שי]] {{אנ|Du Shi}} (נפטר 38), יישם שימוש מורכב בגלגל המים ובמכונות כדי להפעיל את ה[[מפוח]] של [[תנור רם]] ליצירת [[יצקת|ברזל יצוק]]. דו שי מוזכר בקצרה ב[[ספר האן המאוחרת]] (Hou Han Shu) כדלקמן (בכתיב וייד-ג'יילס):

<blockquote>בשנה השביעית לתקופת שלטונו של צ'יין-וו (31 לספירה) הוצב טו שי להיות ראש מחוז נאניאנג. הוא היה אדם נדיב והמדיניות שלו הייתה שלווה; הוא השמיד את עושי הרשע ושיקם את כבודו (של תפקידו). טוב בתכנון, הוא אהב את האנשים הפשוטים וביקש להציל את עמלם. הוא גמל להם דרך המצאתו בעזרת בכוח המים (שואי פאי) את יציקת הכלים החקלאיים (ברזל). לאלה שהיתכו ויוצקו כבר היה את מפוח הדחיפה להבעיר את מדורות הפחמים שלהם, ועתה הם קיבלו את הזכות להשתמש בשטף המים (צ'י שואי) כדי להפעיל אותם... כך קיבלו האנשים תועלת רבה עבור עבודה מועטה. הם מצאו את 'מפוח המים (מופעל) נוח ואימצו אותו באופן נרחב.{{הערה|Needham, p. 370}}</blockquote>

לגלגלי מים בסין נמצאו שימושים מעשיים כמו שהוזכר, כמו גם שימושים יוצא דופן. הממציא הסיני [[ז'אנג הנג]] {{אנ|Zhang Heng}} (78–139) היה הראשון בהיסטוריה שהפעיל כוח מניע בסיבוב המכשיר האסטרונומי, [[הספירה הארמילרית]], באמצעות גלגל מים.{{הערה|Morton, p. 70}} [[הנדסת מכונות|מהנדס המכונות]] [[מא ג׳אן (מהנדס מכונות)|מא ג׳אן]] {{אנ|Ma Jun (mechanical engineer)}} (בערך 200–265) מ[[קאו וויי]] {{אנ|Cao Wei}} השתמש פעם בגלגל מים כדי להפעיל תיאטרון בובות מכני גדול עבור [[קאו רואי|הקיסר מינג מווי]] (שלט 226–239).{{הערה|Needham, p. 158}}


==ראו גם==
==ראו גם==

גרסה מ־13:57, 29 ביולי 2022

גלגל מים מסורתי בפיאקומבו (אנ'), אינדונזיה
גלגל מים הפיך, המניע מנוף מכרה בדה רה מטאליקה (גאורגיוס אגריקולה, 1566)

גלגל מים הוא מכונה להמרת האנרגיה של מים זורמים או נופלים לצורות שימושיות של כוח, לרוב בטחנת מים. גלגל מים מורכב מגלגל (בדרך כלל בנוי מעץ או מתכת), עם מספר להבים או דליים מסודרים על השפה החיצונית היוצרים את רציפות תנועת הגלגל. גלגלי מים היו עדיין בשימוש מסחרי גם במאה ה-20, אך כיום הם כבר אינם נפוצים לשימוש. השימושים כללו טחינת קמח בטחנות, טחינת עץ לעיסה לייצור נייר, חיבוט בברזל יצוק, ייצור במכונות, עיבוד שבבי, ריסוק עפרות וחיבוט סיבים לשימוש בייצור טקסטיל.

חלק מגלגלי המים מוזנים ממי בריכת טחנה, הנוצרת מסכירת נחל זורם. ערוץ למים הזורמים לגלגל מים או ממנו נקרא זרם טחנות (אנ'). זרם המים הבא מבריכת הטחנה לגלגל המים הוא שטף ראשי; זרם המים היוצא מן הגלגל מכונה בדרך כלל מזנב.[1]

גלגלי מים שימשו למטרות שונות ומגוונות מחקלאות ועד עיבוד מתכות בתרבויות עתיקות המשתרעות על פני העולם היווני ההלניסטי, רומא, סין והודו. גלגלי המים ראו שימוש מתמשך בעידן הפוסט-קלאסי, כמו ימי הביניים של אירופה ותור הזהב האיסלאמי, אך גם במקומות אחרים. באמצע עד סוף המאה ה-18, החקירה המדעית של ג'ון סמיטון (אנ') על גלגל המים הובילה לעלייה משמעותית ביעילות המספקת כוח נחוץ עבור המהפכה התעשייתית.[2][3] גלגלי מים החלו להיות מוחלפים על ידי הטורבינה הקטנה, הזולה והיעילה יותר, שפותחה על ידי בנואה פורניירו (אנ'), החל מהדגם הראשון שלו ב-1827.[3] טורבינות מסוגלות להתמודד עם ראש הידרוסטטי, או קו גובה, החורגים מהיכולת של גלגלי מים בגודל מעשי.

הקושי העיקרי של גלגלי מים הוא התלות שלהם במים זורמים, מה שמגביל את מקום הקמתם. ניתן לראות בסכרים הידרואלקטרים ​​מודרניים כצאצאיו של גלגל המים, מכיוון שגם הם מנצלים את תנועת המים במורד.

סוגים

גלגלי מים מחולקים לשני עיצובים בסיסיים:[4]

  • גלגל אופקי עם ציר אנכי.
  • גלגל אנכי עם ציר אופקי.

את האחרון ניתן לחלק לתתי סוגים על פי מיקום פגיעת המים בגלגל, לגלגלים שבהם המים זורמים מתחת הגלגל ופוגעים בכפותיו התחתונות (undershot waterwheel), אלו שבהם המים נופלים מלמעלה ופוגעים בכפותיו העליונות (overshot waterwheel), אלו שבהן המים מגיעים אל אמצע היקף הגלגל ופוגעים בכפותיו האמצעיות (breastshot waterwheel), וסוג נוסף שבהם המים הבאים מלמעלה פוגעים בכפותיו העליונות אך מסובבים אותו במהופך לכיוון זרם המים (backshot waterwheel).[5][6][7] המונח undershot יכול להתייחס לכל גלגל שבו המים עוברים מתחת לגלגל[8] אך לרוב הוא מרמז שכניסת המים בגלגל נמוכה.

בדרך כלל נעשה שימוש בגלגלי מים מסוג Overshot ו-backshot כאשר הפרש הגובה הקיים הוא יותר מכמה מטרים. גלגלי אמצע מתאימים יותר לזרימות גדולות עם ראש מתון. Undershot וגלגל זרמים משתמשים בזרימות גדולות עם ראש נמוך או ללא ראש.

לעתים קרובות, קיימת בריכת טחנה (אנ') קשורה, המהווה מאגר מים וגודלה נקבע לפי הצורך השוטף לכמות האנרגיה. ראשים גדולים יותר אוגרים יותר אנרגיה פוטנציאלית כבידתית (אנ') עבור אותה כמות מים, כך שהמאגרים עבור גלגלי overshot וגלגלי מכת מים עילית אחורית (backshot, pitchback) נוטים להיות קטנים יותר מאשר מאגרים עבור גלגלי מכת מים אמצעית (breastshot).

גלגלי מים pitchback ו-overshot מתאימים במקומות בהם יש נחל קטן עם הפרש גובה העולה על 2 מטרים, לרוב בשילוב עם מאגר קטן. ניתן להשתמש בגלגלי Breastshot ו-undershot בנהרות או בזרימות בנפח גבוה עם מאגרים גדולים.

תקציר הסוגים

ציר אנכי הידוע גם כאמבט או טחנות נורדיות.
  • גלגל אופקי עם ציר אנכי
  • סילון מים פוגע בלהבים המותקנים על הציר
  • משטחי תנועה – להבים
  • מים - נפח נמוך, ראש הידרוסטטי גבוה
  • יעילות - ירודה
Diagram of vertical axis water mill
זרם (מכונה גם משטח חופשי). גלגלי ספינה הם סוג של גלגל זרמים.
  • גלגל אנכי עם ציר אופקי
  • החלק התחתון של הגלגל נמצא בתוך מים זורמים
  • משטחי תנועה - להבים - שטוחים לפני המאה ה-18, מעוקלים לאחר מכן
  • מים - נפח גדול מאוד, ללא ראש הידרוסטטי
  • יעילות - כ-20% לפני המאה ה-18 ומאוחר יותר 50% עד 60%
Diagram of stream shot waterwheel
מכת מים תחתית
  • גלגל אנכי עם ציר אופקי
  • המים פוגעים בגלגל נמוך למטה, בדרך כלל ברבע התחתון
  • משטחי תנועה - להבים - שטוחים לפני המאה ה-18, מעוקלים לאחר מכן
  • מים - נפח גדול, ראש הידרוסטטי נמוך
  • יעילות - כ-20% לפני המאה ה-18 ומאוחר יותר 50% עד 60%
Diagram of undershot waterwheel showing headrace, tailrace, and water
מכת מים אמצעית
  • גלגל אנכי עם ציר אופקי
  • המים פוגעים בגלגל במרכזו לערך, בדרך כלל בין רבע לשלושת רבעי הגובה.
  • משטחי תנועה - דליים - מעוצבים בקפידה כדי להבטיח שהמים ייכנסו בצורה חלקה
  • מים - נפח גדול, ראש הידרוסטטי בינוני
  • יעילות - 50% עד 60%
Diagram of breastshot waterwheel showing headrace, tailrace, and water
מכת מים עילית
  • גלגל אנכי עם ציר אופקי
  • המים פוגעים בסמוך לחלק העליון של הגלגל ולפני הציר כך שהם מתרחקים מזרם הראש
  • משטחי תנועה – דליים
  • מים - נפח נמוך, ראש הידרוסטטי גדול
  • יעילות - 80% עד 90%
Diagram of overshot waterwheel showing headrace, tailrace, water, and spillage
מכת מים עילית אחורית (הידוע גם בשם pitchback)
  • גלגל אנכי עם ציר אופקי
  • המים פוגעים בסמוך לחלק העליון של הגלגל ולפני הציר כך שהם מסתובבים לאחור לעבר זרם הראש
  • משטחי תנועה – דליים
  • מים - נפח נמוך, ראש הידרוסטטי גדול
  • יעילות - 80% עד 90%
Diagram of backshot waterwheel showing headrace, tailrace, water, and spillage

היסטוריה

ערכים מורחבים – טחנת מים, נוריה

כמו בכל המכונות, תנועה סיבובית יעילה יותר במכשירים להעלאת מים מאשר בתנודה.[9] במונחים של מקור כוח, ניתן לסובב את גלגלי המים על ידי כוח אנושי בהתאמה של בעלי חיים או על ידי זרם המים עצמו. גלגלי מים מגיעים בשני עיצובים בסיסיים, מצוידים בציר אנכי או אופקי. את הסוג האחרון ניתן לחלק, בהתאם למקום בו המים פוגעים במשוטי הגלגל, למים המגיעים מעל לגלגל, למרכז הגלגל או לתחתית הגלגל. שני התפקידים ההיסטוריים העיקריים של גלגלי המים היו הרמת מים למטרות השקיה וטחינה, במיוחד של תבואה. במקרה של גלגל ציר אופקי, נדרשת מערכת גלגלי שיניים להעברת הכוח, אשר גלגלי ציר אנכי אינם זקוקים לה.

סין

שני סוגים של משאבות שרשרת המונעות בעזרת הידראוליקה מהטיאנגונג קאיוו (אנ') משנת 1637, שנכתבו בתקופת שושלת מינג על ידי כותב האנציקלופדיות, סונג יינגשינג (1587–1666).

גלגל המים הקדום ביותר שעובד כדוושה תואר על ידי ג'ואנג דזה בשלהי תקופת המדינות הלוחמות (476-221 לפנה"ס). כתוב שגלגל המים הומצא על ידי זיגונג, תלמידו של קונפוציוס במאה ה-5 לפני הספירה.[10] לפחות עד המאה ה-1 לספירה, הסינים של שושלת האן המזרחית השתמשו בגלגלי מים כדי לרסק תבואה בטחנות וכדי להפעיל את מפוחי הבוכנה בחישול עפרות ברזל לברזל יצוק.

בטקסט המכונה "שין לון" (Xin Lun), שנכתב על ידי הואן טאן (אנ') בסביבות שנת 20 לספירה (במהלך גזילת ואנג מאנג), נקבע כי המלך המיתולוגי האגדי, הידוע בשם פו שי, היה האחראי על המצאת העלי והמכתש, שהתפתחו לפטיש הטיה ולאחר מכן לפטיש טפיפה (אנ'). למרות שהמחבר מדבר על פו שי המיתולוגי, קטע בכתיבתו נותן רמז לכך שגלגל המים היה בשימוש נרחב במאה ה-1 לספירה בסין (כתיב וייד-ג'יילס):

פו שי המציא את העלי והמכתש, שהוא כל כך שימושי, ומאוחר יותר שופר בצורה חכמה, כך שניתן היה להשתמש בכל משקל הגוף לדריכה על הפטיש ההטיה (tui), ובכך להגדיל את היעילות פי עשרה. לאחר מכן כוחן של בעלי חיים - חמורים, פרדות, שוורים וסוסים - הופעל באמצעות מכונות, וכוח המים שימש גם לחבטות, כך שהתועלת גדלה פי מאה.[11]

בשנת 31 לספירה, המהנדס והפרפקט של מחוז נאניאנג (אנ'), דו שי (אנ') (נפטר 38), יישם שימוש מורכב בגלגל המים ובמכונות כדי להפעיל את המפוח של תנור רם ליצירת ברזל יצוק. דו שי מוזכר בקצרה בספר האן המאוחרת (Hou Han Shu) כדלקמן (בכתיב וייד-ג'יילס):

בשנה השביעית לתקופת שלטונו של צ'יין-וו (31 לספירה) הוצב טו שי להיות ראש מחוז נאניאנג. הוא היה אדם נדיב והמדיניות שלו הייתה שלווה; הוא השמיד את עושי הרשע ושיקם את כבודו (של תפקידו). טוב בתכנון, הוא אהב את האנשים הפשוטים וביקש להציל את עמלם. הוא גמל להם דרך המצאתו בעזרת בכוח המים (שואי פאי) את יציקת הכלים החקלאיים (ברזל). לאלה שהיתכו ויוצקו כבר היה את מפוח הדחיפה להבעיר את מדורות הפחמים שלהם, ועתה הם קיבלו את הזכות להשתמש בשטף המים (צ'י שואי) כדי להפעיל אותם... כך קיבלו האנשים תועלת רבה עבור עבודה מועטה. הם מצאו את 'מפוח המים (מופעל) נוח ואימצו אותו באופן נרחב.[12]

לגלגלי מים בסין נמצאו שימושים מעשיים כמו שהוזכר, כמו גם שימושים יוצא דופן. הממציא הסיני ז'אנג הנג (אנ') (78–139) היה הראשון בהיסטוריה שהפעיל כוח מניע בסיבוב המכשיר האסטרונומי, הספירה הארמילרית, באמצעות גלגל מים.[13] מהנדס המכונות מא ג׳אן (אנ') (בערך 200–265) מקאו וויי (אנ') השתמש פעם בגלגל מים כדי להפעיל תיאטרון בובות מכני גדול עבור הקיסר מינג מווי (שלט 226–239).[14]

ראו גם

הערות שוליים

  1. ^ Dictionary definition of "tailrace"
  2. ^ Musson; Robinson (1969). Science and Technology in the Industrial Revolution. University of Toronto Press. p. 69. ISBN 9780802016379.
  3. ^ 1 2 Thomson, Ross (2009). Structures of Change in the Mechanical Age: Technological Invention in the United States 1790–1865. Baltimore, MD: The Johns Hopkins University Press. p. 34. ISBN 978-0-8018-9141-0.
  4. ^ "Types of Water Wheels – The Physics of a Water Wheel". ffden-2.phys.uaf.edu. Retrieved 2017-07-10.
  5. ^ Stream wheel term and specifics
  6. ^ Merriam Webster
  7. ^ Power in the Landscape
  8. ^ Collins English Dictionary
  9. ^ Oleson 2000, p. 229
  10. ^ How Water Influences Our Lives. Springer. 22 November 2016. ISBN 9789811019388.
  11. ^ Needham, p. 392
  12. ^ Needham, p. 370
  13. ^ Morton, p. 70
  14. ^ Needham, p. 158

ביבליוגרפיה

  • Soto Gary, Water Wheel. vol. 163. No. 4. (Jan., 1994), p. 197
  • al-Hassani, S.T.S., Woodcock, E. and Saoud, R. (2006) 1001 inventions : Muslim heritage in our world, Manchester : Foundation for Science Technology and Civilisation, ISBN 0-9552426-0-6
  • Allan. April 18, 2008. Undershot Water Wheel. Retrieved from Making an Undershoot Water Wheel, www.builditsolar.com
  • Donners, K.; Waelkens, M.; Deckers, J. (2002), "Water Mills in the Area of Sagalassos: A Disappearing Ancient Technology", Anatolian Studies, Anatolian Studies, Vol. 52, vol. 52, pp. 1–17, doi:10.2307/3643076, JSTOR 3643076, S2CID 163811541
  • Glick, T.F. (1970) Irrigation and society in medieval Valencia, Cambridge, MA: Belknap Press of Harvard University Press, ISBN 0-674-46675-6
  • Greene, Kevin (2000), "Technological Innovation and Economic Progress in the Ancient World: M.I. Finley Re-Considered", The Economic History Review, vol. 53, no. 1, pp. 29–59, doi:10.1111/1468-0289.00151
  • Hill, D.R. (1991) "Mechanical Engineering in the Medieval Near East", Scientific American, 264 (5:May), pp. 100–105
  • Lucas, A.R. (2005). "Industrial Milling in the Ancient and Medieval Worlds: A Survey of the Evidence for an Industrial Revolution in Medieval Europe". Technology and Culture. 46 (1): 1–30. doi:10.1353/tech.2005.0026. S2CID 109564224.
  • Lewis, M.J.T. (1997) Millstone and Hammer: the origins of water power, University of Hull Press, ISBN 0-85958-657-X
  • Morton, W.S. and Lewis, C.M. (2005) China: Its History and Culture, 4th Ed., New York : McGraw-Hill, ISBN 0-07-141279-4
  • Murphy, Donald (2005), Excavations of a Mill at Killoteran, Co. Waterford as Part of the N-25 Waterford By-Pass Project (PDF), Estuarine/ Alluvial Archaeology in Ireland. Towards Best Practice, University College Dublin and National Roads Authority
  • Needham, J. (1965) Science and Civilization in China – Vol. 4: Physics and physical technology – Part 2: Mechanical engineering, Cambridge University Press, ISBN 0-521-05803-1
  • Nuernbergk, D.M. (2005) Wasserräder mit Kropfgerinne: Berechnungsgrundlagen und neue Erkenntnisse, Detmold : Schäfer, ISBN 3-87696-121-1
  • Nuernbergk, D.M. (2007) Wasserräder mit Freihang: Entwurfs- und Berechnungsgrundlagen, Detmold : Schäfer, ISBN 3-87696-122-X
  • Pacey, A. (1991) Technology in World Civilization: A Thousand-year History, 1st MIT Press ed., Cambridge, Massachusetts : MIT, ISBN 0-262-66072-5
  • Oleson, John Peter (1984), Greek and Roman Mechanical Water-Lifting Devices: The History of a Technology, University of Toronto Press, ISBN 978-90-277-1693-4
  • Quaranta Emanuele, Revelli Roberto (2015), "Performance characteristics, power losses and mechanical power estimation for a breastshot water wheel", Energy, Energy, Elsevier, 87: 315–325, doi:10.1016/j.energy.2015.04.079
  • Oleson, John Peter (2000), "Water-Lifting", in Wikander, Örjan (ed.), Handbook of Ancient Water Technology, Technology and Change in History, vol. 2, Leiden: Brill, pp. 217–302, ISBN 978-90-04-11123-3
  • Reynolds, T.S. (1983) Stronger Than a Hundred Men: A History of the Vertical Water Wheel, Johns Hopkins studies in the history of technology: New Series 7, Baltimore: Johns Hopkins University Press, ISBN 0-8018-2554-7
  • Schioler, Thorkild (1973), Roman and Islamic Water-Lifting Wheels, Odense University Press, ISBN 978-87-7492-090-8
  • Shannon, R. 1997. Water Wheel Engineering. Retrieved from [1].
  • Siddiqui, Iqtidar Husain (1986). "Water Works and Irrigation System in India during Pre-Mughal Times". Journal of the Economic and Social History of the Orient. 29 (1): 52–77. doi:10.1163/156852086X00036.
  • Syson, l. (1965) British Water-mills, London : Batsford, 176 p.
  • Wikander, Örjan (1985), "Archaeological Evidence for Early Water-Mills. An Interim Report", History of Technology, vol. 10, pp. 151–179
  • Wikander, Örjan (2000), "The Water-Mill", in Wikander, Örjan (ed.), Handbook of Ancient Water Technology, Technology and Change in History, vol. 2, Leiden: Brill, pp. 371–400, ISBN 978-90-04-11123-3
  • Wilson, Andrew (1995), "Water-Power in North Africa and the Development of the Horizontal Water-Wheel", Journal of Roman Archaeology, vol. 8, pp. 499–510
  • Wilson, Andrew (2002), "Machines, Power and the Ancient Economy", The Journal of Roman Studies, [Society for the Promotion of Roman Studies, Cambridge University Press], vol. 92, pp. 1–32, doi:10.2307/3184857, JSTOR 3184857, S2CID 154629776

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא גלגל מים בוויקישיתוף
  • Glossary of water wheel terms
  • Essay/audio clip
  • WaterHistory.org Several articles concerning water wheels
  • Computer simulation of an undershot water wheel
  • Persian Wheel in India, 1814–1815 painting with explanatory text, at British Library website.
  • Computer simulation of an overshot water wheel
  • Guide to the Water Wheel Construction: A Thesis Presented to N.C. College of Agri. and Mech. Arts by L. T. Yarbrough 1893 June
  • Foundry Patterns for 18 different Welsh waterwheel shrouds- 2015