חוק בייס

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

חוק בייס (או: נוסחת בייס; באנגלית: Bayes' Theorem) הוא תוצאה בתורת ההסתברות המאפשרת לחשב הסתברות מותנית של מאורע כאשר יודעים את ההסתברויות המותנות ההפוכות. הוא נוסח על ידי המתמטיקאי האנגלי תומאס בייס, במאמרו "מאמר על פתרון בעיה בתורת הסיכויים" (Essay Towards Solving a Problem in the Doctrine of Chances), אשר פורסם ב-1764, לאחר מותו של בייס.

ניסוח פורמלי[עריכת קוד מקור | עריכה]

הסתברות המותנית של מאורע A בהינתן מאורע B" היא הסיכוי להתרחשותו של A, בהנחה ש- B אכן התרחש. כביכול, ההנחה מכווצת את מרחב המדגם. מרעיון זה נובעת הנוסחה להסתברות המותנית: \ P(A|B) = \frac{P(A\cap B)}{P(B)}.

חוק בייס מאפשר לחשב את ההסתברות המותנית ההפוכה: ההסתברות המותנית של B בהינתן A:

P(B|A) = \frac{P(A|B)\cdot P(B)}{P(A)}.

ניסוח אחר למשפט: אם \left\{B_i\right\}_{i\in K} חלוקה של מרחב המדגם, שבה לכל אחד מהחלקים הסתברות חיובית, אז לכל מאורע A בעל הסתברות חיובית ולכל k, מתקיים:

P(B_k|A)=\frac{P(A|B_k)P(B_k)}{\sum_i P(A|B_i)P(B_i)}.

ניסוח זה נובע ישירות מהניסוח הראשון בשילוב עם נוסחת ההסתברות השלמה.

דוגמה[עריכת קוד מקור | עריכה]

במדינה קטנה במזרח התיכון יש שתי קופות חולים; 75% מהתושבים חברים בגדולה מבין השתיים, והשאר בקטנה. סקרי שביעות רצון העלו ש-90% מן החברים בקופת החולים הקטנה מרוצים מן הקופה, בעוד שרק 80% מהחברים בקופת החולים הגדולה מרוצים ממנה. על-כן מפרסמת החברה הקטנה מודעות ענק שלפיהן "אם אתם מרוצים, כנראה שאתם חברים שלנו". חוק בייס מאפשר לבחון את נכונות הטענה:

לצורך הדוגמה, קבוצת האנשים בעלי התכונה "האדם חבר בקופה הקטנה" תסומן ב-S, והקבוצה המשלימה ("האדם חבר בקופה הגדולה") תסומן ב-\ S^c, ואם כן, \ P(S) = 0.25 ו-\ P(S^{c}) = 0.75. כמו כן, התכונה "האדם מרוצה" תסומן ב-H. לפי הסקר: \ P(H|S) = 0.9, ו-\ P(H|S^c) = 0.8. לפי נוסחת ההסתברות השלמה, \ P(H) = P(H|S) P(S) + P(H|S^c) P(S^c) = 0.9\cdot 0.25 + 0.8 \cdot 0.75 = 0.825. לכן, הסיכוי של אדם מרוצה להשתייך לקופה הקטנה שווה ל-\ P(S|H) = \frac{P(S \cap H)}{P(H)} = \frac{P(H|S)P(S)}{P(H)} = \frac{0.9 \cdot 0.25}{0.825} \approx 0.273.

אם כן, טענת הפרסומת שקרית: אם אדם מרוצה הוא כנראה חבר בקופת החולים הגדולה. באופן דומה, ניתן להראות שגם אם הוא לא מרוצה הוא כנראה חבר בקופת החולים הגדולה.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]