משלים (מתמטיקה)
בתורת הקבוצות, משלים של קבוצה (באנגלית: complement of set) הוא קבוצה אחרת, אשר מכילה את כל האיברים שאינם נמצאים ב-. זאת ביחס לקבוצה כלשהי שהיא "הקבוצה האוניברסלית" - קבוצה שבהקשר הנוכחי של הדיון, כל קבוצה שעליה נדבר היא תת קבוצה של .
על-פי הגדרה זו, האיחוד של קבוצת והמשלים של הוא הקבוצה , ואילו החיתוך ביניהן הוא קבוצה ריקה.
הגדרה פורמלית[עריכת קוד מקור | עריכה]
תהא קבוצה, ותהא קבוצה חלקית שלה. אז המשלים של ב- יוגדר כך: . סימונים מקובלים נוסף למשלים הם . עם זאת, הסימון מתנגש לעיתים עם שימושים אחרים של הסימון בקו עליון, ולכן מקובל להימנע ממנו.
דוגמה[עריכת קוד מקור | עריכה]
תהא קבוצה המכילה את כל המספרים הטבעיים 1,2,3,....
תהא קבוצה המכילה רק את המספרים הטבעיים הזוגיים 2,4,6.... הקבוצה היא המשלים של ביחס ל- אם היא מכילה את המספרים המוכלים ב- אך לא ב-, כלומר את המספרים הטבעיים האי זוגיים 1,3,5....
ניתן לראות כי החיתוך של עם נותן קבוצה ריקה, בעוד שאיחודן יוצר את הקבוצה .
תכונות בסיסיות[עריכת קוד מקור | עריכה]
, כלומר המשלים של המשלים של קבוצה הוא הקבוצה עצמה.
, כלומר, חיתוך קבוצה והמשלים שלה שווה לקבוצה הריקה.
, כלומר, איחוד קבוצה והמשלים שלה שווה לקבוצה האוניברסלית.
, כלומר המשלים של הקבוצה האוניברסלית הוא הקבוצה הריקה.
, כלומר המשלים של הקבוצה הריקה הוא הקבוצה האוניברסלית.
כללי דה מורגן[עריכת קוד מקור | עריכה]
כללי דה מורגן קושרים את הפעולות "איחוד", "חיתוך", "משלים". בכתיב פורמלי הם מוצגים כך:
נושאים בתורת הקבוצות | |
---|---|
|