68,018
עריכות
מ (זתה --> זטא) |
Felagund-bot (שיחה | תרומות) מ (בוט - מחליף 'פונקצית' ב'פונקציית') |
||
יהי <math>x_0=\frac{p}{q}\in\mathbb{Q}</math>, כאשר <math>\,p,q</math> שלמים זרים ו-<math>\,q>0</math>. מכאן ש-<math>f(x_0)=\frac{1}{q}</math>. נראה כי <math>\,f</math> אינה רציפה ב-<math>\,x_0</math>. קבוצת המספרים האי-רציונלים [[קבוצה צפופה|צפופה]] ב[[הישר הממשי|ישר הממשי]], לכן יש סדרה <math>\{x_n\}_{n=1}^\infty</math> של מספרים '''אי רציונלים''' המקיימת <math>x_n\to x_0</math>. לכל <math>\,n</math> מתקיים <math>\,f(x_n)=0</math>, ומכאן <math>\lim_{n\to\infty} f(x_n)=0\ne f(x_0)=\frac{1}{q}</math>, ולכן לפי הגדרת ה[[רציפות]] לפי היינה, הפונקציה אינה רציפה ב-<math>\,x_0</math>.
כעת נניח ש-<math>\,x_0</math> מספר אי-רציונלי; נראה שהפונקציה רציפה ב- <math>\,x_0</math>. נשתמש בהגדרת ה[[רציפות]] לפי קושי. יהי <math>\varepsilon>0</math>. יש למצוא <math>\,\delta>0</math> כך שאם <math>x\in(x_0-\delta,x_0+\delta)</math> אזי <math>|f(x)-f(x_0)|<\varepsilon</math>. קיים <math>\,N</math> שלם כך ש-<math>0 < \frac{1}{N} < \varepsilon</math>. נסמן <math>\ M=N!</math> (
# <math>\,x\notin\mathbb{Q}</math> ואז <math>\,f(x)=0</math>, ומכאן <math>|f(x)-f(x_0)|=0<\varepsilon</math>.
# <math>\ x=r=\frac{p}{q}</math> הוא שבר מצומצם שמרחקו מ-<math>\,x_0</math> קטן מ-<math>\ \delta</math>, אז <math>\,q</math> לא יכול לחלק את <math>\,M</math>, ולכן <math>\ q>N</math> ו-<math>\ f(r)=\frac{1}{q}<\frac{1}{N}<\varepsilon</math>, כלומר, אם <math>\,|r-x_0|<\delta</math> אזי <math>|f(r)-f(x_0)|<\varepsilon</math>, כדרוש.
|
עריכות