משפט המולטינום

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

במתמטיקה, משפט המולטינום הוא נוסחה לפיתוח חזקות של פולינום. הנוסחה מהווה הכללה מהבינום של ניוטון, אשר מציג מקרה פרטי עבור בינום.

נוסחת המולטינום[עריכת קוד מקור | עריכה]

עבור m מספר חיובי ו-n מספר אי-שלילי (חיובי או אפס), מתקיים:

(x_1 + x_2  + \cdots + x_m)^n 
 = \sum_{k_1+k_2+\cdots+k_m=n} {n \choose k_1, k_2, \ldots, k_m} x_1^{k_1} \cdots x_m^{k_m}\,,

כאשר

 {n \choose k_1, k_2, \ldots, k_m}
 = \frac{n!}{k_1!\, k_2! \cdots k_m!}

הוא המקדם המולטינומי, המהווה הכללה של המקדם הבינומי.

הסכום האמור נלקח על כל הקומבינציות האפשריות של מספרים אי-שליליים של k1 עדkm כך שסכום כל ki הוא n. כלומר, עבור כל איבר בסכום, סכום המעריכים בחזקות חייב להסתכם ל-n. (נציין כי איברים מהצורה x0 נלקחים בתור 1, אף אם x הוא 0).

עבור המקרה הפרטי m = 2 מתקבל הבינום של ניוטון.

את המשפט ניתן להוכיח באינדוקציה על m, ובעזרת הבינום של ניוטון.

דוגמה[עריכת קוד מקור | עריכה]

החזקה השלישית של הביטוי a + b + c נתונה על ידי:

(a+b+c)^3 = a^3 + b^3 + c^3 + 3 a^2 b + 3 a^2 c + 3 b^2 a + 3 b^2 c + 3 c^2 a + 3 c^2 b + 6 a b c.

ניתן להוכיח נוסחה זו על ידי שימוש בחוק הפילוג, אך ניתן לחשבה יותר בקלות באמצעות נוסחת המולטינום, אשר נותנת לנו את המקדם של כל איבר, בתור המקדם המולטינומי.

המקדם המולטינומי בקומבינטוריקה[עריכת קוד מקור | עריכה]

כאמור, המקדם  {n \choose k_1, k_2, \ldots, k_m}= \frac{n!}{k_1!\, k_2! \cdots k_m!} נקרא המקדם המוליטנומי. למקדם זה יש משמעות קומבינטורית, המכלילה את משמעות המקדם הבינומי:  {n \choose k_1, k_2, \ldots, k_m} היא מספר הדרכים לחלק n עצמים שונים ל-m קבוצות, כך שבקבוצה הראשונה יש k1 עצמים, בקבוצה השנייה k2 עצמים וכן הלאה.

בעזרת משמעות קומבינטורית ניתן לספק הוכחה נוספת לנוסחא לעיל, באופן זהה להוכחת נוסחת הבינום של ניוטון.

דוגמא[עריכת קוד מקור | עריכה]

נחשב את מספר המחרוזות השונות שאפשר להרכיב בעזרת האותיות b,a,n,a,n,a - סה"כ יש כאן 6 אותיות, מתוכן פעם אחת b, פעמיים n, ושלוש פעמים a - ולכן התשובה היא {6 \choose 3, 2, 1}=\frac{6!}{1! 2! 3!} = 60.