שורש (של פונקציה)

מתוך ויקיפדיה, האנציקלופדיה החופשית
(הופנה מהדף שורש של פונקציה)
קפיצה לניווט קפיצה לחיפוש

שורש של פונקציה הוא איבר בתחום ההגדרה שעבורו ערך הפונקציה הוא 0. למשל, עבור הפונקציה הצבת תחזיר , ולכן הוא שורש של הפונקציה. שורשים של פונקציה נקראים גם אפסים של הפונקציה או פתרונות של הפונקציה.

כפועל יוצא מההגדרה, שורש של פונקציה הוא ה-x שעבורו נחתך גרף הפונקציה עם ציר ה-x. כך למשל נקודות החיתוך של הפונקציה עם ציר ה-x הן כששיעורי ה-x הם 2 ו-2-.

בעיית מציאת השורשים של פונקציות באופן נומרי היא כר פורה למחקר מתמטי. אחת השיטות הבסיסיות בענף זה היא שיטת ניוטון-רפסון, שהיא שיטה איטרטיבית למציאת שורשים בעזרת נגזרות.

שורש של פולינום[עריכת קוד מקור | עריכה]

עבור משוואה ממעלה ראשונה, . הפתרון הוא הנקודה . עבור משוואה ממעלה שנייה, , הפתרון הוא . בדומה לזה יש נוסחאות גם למשוואות ממעלה שלישית ורביעית. אולם, אווריסט גלואה הראה כי אין פתרון באמצעות רדיקלים למשוואה ממעלה חמישית ומעלה.

המשפט הקטן של בזו קובע כי a הוא שורש של פולינום , אם ורק אם הפולינום ‎ מחלק את . החזקה המקסימלית שבה מחלק x-a את הפולינום נקראת הריבוי (האלגברי) של השורש.

המשפט היסודי של האלגברה קובע ששדה המספרים המרוכבים הוא סגור אלגברית, כלומר שלכל פולינום ממעלה n במקדמים מרוכבים, יש בדיוק n שורשים כולל ריבוי.


קישורים חיצוניים[עריכת קוד מקור | עריכה]

P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.