פונקציה חד-חד-ערכית ועל – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
←‏ניסוח פורמלי: לדעתי סימן ה hyphen לא התאים פה וסדור יותר, נוח יותר ומבלבל פחות לקרוא את המשפט בלעדיו.
←‏דוגמאות: הדגשת מושג הטווח
שורה 10: שורה 10:
==דוגמאות==
==דוגמאות==
[[קובץ:Bijection.svg|שמאל|ממוזער|200px|דוגמה לפונקציה חד-חד-ערכית ועל]]
[[קובץ:Bijection.svg|שמאל|ממוזער|200px|דוגמה לפונקציה חד-חד-ערכית ועל]]
הפונקציה <math>y=x^3</math> היא חד-חד-ערכית ועל בתחום <math>f:[-1, 1] \rightarrow [-1, 1]</math>, משום שכל ערך של y בטווח <math>[-1,1]</math> מופיע בדיוק פעם אחת.
הפונקציה <math>y=x^3</math> היא חד-חד-ערכית ועל בתחום <math>f:[-1, 1] \rightarrow [-1, 1]</math>, משום שכל ערך של y בטווח <math>[-1,1]</math> מופיע בדיוק פעם אחת (מינוס אחד, אפס, ואחד).
{{-}}
{{-}}

==תכונות ושימושים==
==תכונות ושימושים==
אם קיימת פונקציה כזו, הקבוצות <math>X</math> ו-<math>Y</math> נקראות "[[קבוצות שקולות|שקולות]]" והן בעלות אותה [[עוצמה (מתמטיקה)|עוצמה]].{{ש}}
אם קיימת פונקציה כזו, הקבוצות <math>X</math> ו-<math>Y</math> נקראות "[[קבוצות שקולות|שקולות]]" והן בעלות אותה [[עוצמה (מתמטיקה)|עוצמה]].{{ש}}

גרסה מ־17:11, 21 בספטמבר 2020

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, פונקציה חד-חד-ערכית ועל היא פונקציה שמתקיימות בה שתי תכונות:

ניסוח פורמלי

פונקציה , מהקבוצה לקבוצה , היא חד-חד-ערכית ועל, אם לכל קיים יחיד כך ש .

דוגמאות

דוגמה לפונקציה חד-חד-ערכית ועל

הפונקציה היא חד-חד-ערכית ועל בתחום , משום שכל ערך של y בטווח מופיע בדיוק פעם אחת (מינוס אחד, אפס, ואחד).

תכונות ושימושים

אם קיימת פונקציה כזו, הקבוצות ו- נקראות "שקולות" והן בעלות אותה עוצמה.
פונקציה היא חד-חד-ערכית ועל אם ורק אם היא הפיכה, ולכן יחס השקילות הזה בין קבוצות הוא יחס סימטרי.

אם על הקבוצות מוגדר מבנה נוסף (פעולות אלגבריות, טופולוגיה, מטריקה וכדומה), אז פונקציה חד-חד-ערכית ועל ביניהן השומרת על המבנה נקראת איזומורפיזם.

פונקציה חד-חד-ערכית ועל מקבוצה אל עצמה נקראת תמורה.
אוסף התמורות על קבוצה הוא חבורת הסימטריות של הקבוצה; לדוגמה, הפונקציה המתאימה לכל מספר שלם את העוקב שלו, היא תמורה על המספרים השלמים. פונקציות חד-חד-ערכיות ועל הן מאבני הבניין של צופנים סימטריים מודרניים רבים בקריפטוגרפיה.

ראו גם

קישורים חיצוניים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.