איבר הופכי

מתוך ויקיפדיה, האנציקלופדיה החופשית

באלגברה, איבר הופכי לאיבר נתון הוא איבר שהכפלתו באיבר הנתון נותנת את איבר היחידה. לדוגמא, שליש הוא ההפכי של המספר 3 ביחס לכפל. זוהי הכללה של המושג "מספר הופכי".

המושג "איבר הופכי" מוגדר לכל פעולה בינארית. איבר הופכי ביחס לפעולת החיבור נקרא איבר נגדי.

הגדרה פורמלית[עריכת קוד מקור | עריכה]

תהי קבוצה שמוגדרת עליה פעולה בינארית שנסמנה . אם הוא איבר היחידה של ומתקיים , אז הוא הופכי משמאל של , ו- הוא הופכי מימין של . במקרה זה a הפיך מימין ו-b הפיך משמאל.

אם האיבר הופכי מימין והופכי משמאל של איבר , אז קרוי הופכי דו-צדדי או בפשטות הופכי של . איבר שיש לו הופכי דו-צדדי ב- קרוי איבר הפיך ב-.

ביחס לפעולה אסוציאטיבית, אם איבר הוא הפיך מימין ומשמאל אז הוא הפיך, ויש לו הפכי יחיד. הקבוצה של האיברים ההפיכים היא חבורה, המסומנת או . מערכת עם פעולה בינארית (לאו דווקא אסוציאטיבית) שיש בה איבר יחידה וכל איבר בה הפיך מימין ומשמאל נקראת לולאה.

דוגמאות[עריכת קוד מקור | עריכה]

הופכי שמאלי וימני בחוגים[עריכת קוד מקור | עריכה]

בחוג R שאינו קומוטטיבי, ייתכן שאיבר a יהיה הפיך משמאל אך לא מימין. אם a הפיך משמאל אז a הפיך מימין אם ורק אם a אינו מחלק אפס מימין. חוג R שבו מתקיים ab=1 אם ורק אם ba=1 נקרא חוג סופי-דדקינד. חוג שאינו סופי-דדקינד מכיל חוגי מטריצות מכל ממד בתור תת-חוגים (בלי יחידה).