אי-שוויון צ'בישב
בתורת ההסתברות, אי-שוויון צ'בישב (גם: צ'בישוֹב) הוא אי-שוויון המאפשר להעריך את ההתפלגות של משתנים מקריים על ידי התוחלת שלהם. האי-שוויון קרוי על שמו של ממציאו, המתמטיקאי הרוסי פפנוטי צ'בישב.
אי-שוויון צ'בישב קובע כי אם השונות והתוחלת של משתנה מקרי קיימות, אז לכל מתקיים: .
אי-שוויון צ'בישב מאפשר להעריך את ההסתברות לכך שמשתנה מקרי כלשהו יסטה במידה זו או אחרת מהתוחלת שלו באופן מדויק יותר מאי-שוויון מרקוב ונותן משמעות נוספת למושג השונות. בפרט נובע ממנו, שכאשר השונות קטנה, ההסתברות לסטיות גדולות מהתוחלת קטנה גם היא. בעזרת אי-שוויון צ'בישב אפשר להוכיח את החוק החלש של המספרים הגדולים למקרה הפרטי שבו לסדרת המשתנים המקריים יש שונות סופית. אי-שוויון צ'רנוף נותן גרסה חזקה יותר עבור משתני ברנולי.
בגרסה כללית יותר, אי-שוויון צ'בישב קובע כי . אי-שוויון קאנטלי הוא גרסה חד צדדית של אי-שוויון צ'בישב.
הוכחת אי-שוויון צ'בישב
[עריכת קוד מקור | עריכה]על פי ההגדרה: . אם נבצע אינטגרציה רק על קבוצת הנקודות במרחב ההסתברות עבורן נקבל גודל קטן יותר או שווה לזה שהתחלנו ממנו:
ועל ידי חלוקה של שני האגפים ב מקבלים את אי-שוויון צ'בישב.
ניתן גם להוכיח את אי-שוויון צ'בישב ישירות מאי-שוויון מרקוב.
קישורים חיצוניים
[עריכת קוד מקור | עריכה]- אי-שוויון צ'בישב, באתר אנציקלופדיה בריטניקה (באנגלית)
- אי-שוויון צ'בישב, באתר MathWorld (באנגלית)