חבורת לי

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

בגאומטריה דיפרנציאלית ובאלגברה, חבורת לי היא יריעה חלקה (מרחב שדומה באופן מקומי למרחב האוקלידי), שמוגדר עליה מבנה של חבורה כך שפעולות החבורה הן רציפות ואף חלקות ביחס למבנה הגאומטרי (והדיפרנציאלי) של היריעה. חבורות לי הן אובייקטים גאומטריים ואלגבריים בו-זמנית, ובהתאם ניתן להוכיח עליהן טענות חזקות - הן גאומטריות והן אלגבריות, על ידי שילוב בין המבנה הגאומטרי והאלגברי שמוגדר בהן.

בחבורת לי כל הנקודות על היריעה הן גם איברים בחבורה, ואם נבצע את פעולת החבורה על שני איברים כלשהם a ו-b, ובמקביל נבצע את הפעולה על שני איברים המייצגים נקודות קרובות על גבי היריעה c ו-d, אז גם המכפלות יהיו נקודות קרובות על גבי היריעה, כלומר ab תהיה נקודה קרובה ל-cd.

חבורות לי קרויות על שם המתמטיקאי הנורבגי סופוס לי והוגדרו על ידו לראשונה בשנת 1870. לחבורות לי חשיבות רבה באנליזה מתמטית, בפיזיקה ובגאומטריה.

הגדרה פורמלית[עריכת קוד מקור | עריכה]

חבורת לי היא אובייקט חבורתי בקטגוריה של יריעות חלקות, כלומר - בהינתן יריעה חלקה שהיא גם חבורה G, נאמר ש-G היא חבורת לי אם פעולות הכפל וההופכי של החבורה הן פונקציות חלקות. לדוגמה - אוסף המטריצות הריבועיות ההפיכות - (GL(n,F מסדר כלשהו מהווה חבורת לי.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.