פונקציית רימן – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
מ ועדת קישוט
מ תמונה
שורה 1: שורה 1:
{{פירוש נוסף|נוכחי=פונקציית הסרגל (הנקראת גם פונקציית רימן)|אחר=פונקציית זטא של רימן|ראו=[[פונקציית זטא של רימן]]}}
{{פירוש נוסף|נוכחי=פונקציית הסרגל (הנקראת גם פונקציית רימן)|אחר=פונקציית זטא של רימן|ראו=[[פונקציית זטא של רימן]]}}

[[תמונה:200px-Dirichlet Popcorn Plot on 0 to 1.png|200px|left|thumb|פונקציית רימן בקטע (0,1)]]


'''פונקציית רימן''' (על שמו של ה[[מתמטיקאי]] הגרמני [[ברנרד רימן]]) (או '''פונקציית הסרגל''') היא [[פונקציה ממשית]] המוגדרת כדלהלן:
'''פונקציית רימן''' (על שמו של ה[[מתמטיקאי]] הגרמני [[ברנרד רימן]]) (או '''פונקציית הסרגל''') היא [[פונקציה ממשית]] המוגדרת כדלהלן:

גרסה מ־23:11, 19 ביולי 2007

קובץ:200px-Dirichlet Popcorn Plot on 0 to 1.png
פונקציית רימן בקטע (0,1)

פונקציית רימן (על שמו של המתמטיקאי הגרמני ברנרד רימן) (או פונקציית הסרגל) היא פונקציה ממשית המוגדרת כדלהלן:

כלומר, מניחים כי הוא שבר מצומצם.

(ב- ערך הפונקציה הוא 1, כמו בכל מספר שלם).

פונקציה זו מוגדרת על כל הישר הממשי, והיא מתאפיינת בתכונות מעניינות:

הערה על שם הפונקציה

שמות נוספים בהם מוכרת הפונקציה:

  • פונקציית הסרגל
  • פונקציית הפופקורן
  • פונקציית תומה (Thomae's function)

הוכחה

נוכיח כי הפונקציה רציפה בכל נקודה אי-רציונלית, ואינה רציפה באף נקודה רציונלית על הישר.

יהי , כאשר שלמים זרים ו-. מכאן ש-. נראה כי אינה רציפה ב-. קבוצת המספרים האי-רציונלים צפופה בישר הממשי, לכן יש סדרה של מספרים אי רציונלים המקיימת . לכל מתקיים , ומכאן , ולכן לפי הגדרת הרציפות לפי היינה, הפונקציה אינה רציפה ב-.

כעת נניח ש- מספר אי-רציונלי; נראה שהפונקציה רציפה ב- . נשתמש בהגדרת הרציפות לפי קושי. יהי . יש למצוא כך שאם אזי . קיים שלם כך ש-. נסמן (פונקציית העצרת). מכיוון ש- אינו רציונלי, קיים כך שהמרחק מ- לכל שבר מהצורה עם שלם, גדול מ-. יהי המקיים . ייתכנו שתי אפשרויות:

  1. ואז , ומכאן .
  2. הוא שבר מצומצם שמרחקו מ- קטן מ-, אז לא יכול לחלק את , ולכן ו-, כלומר, אם אזי , כדרוש.

כלומר הראינו כי בכל מקרה, אם אזי , ומכאן ש- רציפה ב-.

ראו גם