בסיס בינארי

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
Incomplete-document-purple.svg יש להשלים ערך זה: בערך זה חסר תוכן מהותי. סיבה: הערך כתוב בצורת מדריך ולא כערך אנציקלופדי. השוו לוויקיפדיה האנגלית. ייתכן שתמצאו פירוט בדף השיחה.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.

במתמטיקה ובמדעי המחשב מערכת ספירה על בסיס בינארי, או מערכת ספירה על בסיס 2, מייצגת ערכים מספריים באמצעות שני סמלים, בדרך כלל 0 ו- 1. בפרט, שיטת הספירה הבינארית הנפוצה היא סימון לפי מקום עם בסיס 2. מספרים המיוצגים בשיטה זו נקראים לרוב מספרים בינאריים.

בגלל פשטות המימוש של אלקטרוניקה ספרתית בעלת שתי רמות מתח בלבד, נוח להשתמש במערכות דיגיטליות בבסיס בינארי. למעשה כל המערכות הדיגיטליות הנפוצות, מחשבים, טלפונים סלולריים, מערכות משובצות מחשב וכדומה עושים שימוש בבסיס בינארי.

היסטוריה[עריכת קוד מקור | עריכה]

המשכיל ההודי פינגלה פיתח עקרונות מתמטיים לתיאור משקל בשירה ובזאת למעשה הציג את התיאור הראשון למערכת ספירה בינארית. הוא עשה שימוש בסמלים לייצוג הברות, וחילק בין הברות קצרות וארוכות. שני הסמלים ששימשו אותו לא היו 0 ו-1 אלא קו קצר וקו ארוך השווה באורכו לשני קוים קצרים, בצורה הדומה לקוד מורס. הוא יצר טבלאות על מנת לתת לכל רצף ערך ייחודי. דוגמה לטבלה שכזו: (יש לציין שההצגה הזו היא בכיוון ההפוך מהשיטה המודרנית)

0 0 0 0   ערך מספרי 110
1 0 0 0   ערך מספרי 210
0 1 0 0   ערך מספרי 310
1 1 0 0   ערך מספרי 410

הבגואה הם שמונה שלשות בשימוש הקוסמולוגיה של הטאואיזם לייצוג העקרונות היסודיים של המציאות. שלשה מורכבת משלושה קווים, כאשר כל קו הוא "שבור" או "לא שבור", לייצוג יין ויאנג בהתאמה. המבנה הזה אנלוגי למספרים בינאריים תלת ספרתיים. המבנה היה בשימוש לכל הפחות מתקופת שושלת ג'ואו, שכן הוא מופיע בספר אי צ'ינג. הספר מחולק לשישים וארבעה פרקים המיוצגים על ידי סדרה של שישיות של קווים, מה שמקביל למספרים בינאריים בעלי שש ספרות.

שיטת הספירה הבינארית המודרנית נתגלתה על ידי גוטפריד וילהלם לייבניץ בשנת 1679. השיטה של לייבניץ עושה שימוש ב0 ו-1, כמו בשיטה המודרנית. כחובב התרבות הסינית, לייבניץ הכיר את האי צ'ינג וציין בהתפעלות את ההתאמה בין השישיות והמספרים הבינאריים בעלי שש ספרות.

בשנת 1854 פרסם המתמטיקאי הבריטי ג'ורג' בול את ספרו העיקרי בתורת ההיגיון, "חקירה של חוקי החשיבה" ובו הציג את האלגברה הבוליאנית. האלגברה הבוליאנית מהווה בסיס ללוגיקה בוליאנית- ענף העוסק בפסוקים אלגבריים שערכי איבריהם אמת או שקר בלבד. הערכים מיוצגים על ידי הסימונים '1'\ ו- '0'\ בהתאמה. לענף זה שימוש רב בתחשיב פסוקים, באלקטרוניקה ובמדעי המחשב.

השיטה המקובלת לספירה בבסיס בינארי[עריכת קוד מקור | עריכה]

בשיטה זו, ערכה של כל ספרה "1" הוא \ 2^n כאשר n הוא מיקום הספרה מימין, החל מ-0.

לדוגמה, הייצוג של המספרים הטבעיים הקטנים מ-8 יהיה:

ייצוג בינארי של מספרים מ-0 עד 7

בסיס בינארי משמש כיום בעיקר בתחום מדעי המחשב, זאת כיוון שבמעגלים לוגיים אלקטרוניים נוח להסתפק בהבחנה בין שתי רמות מתח בלבד, גבוה ונמוך, המיוצגות על ידי "1" ו-"0" בהתאמה. ולכן זהו הבסיס הטבעי להביע בו מספרים במחשב המורכב ממעגלים כאלו.

מאפיינים נוספים ייחודיים לשיטה זו הם הדמיון שלה לבסיס הסטנדרטי באלגברה לינארית, וכן היותה הבסיס הנמוך ביותר בשימוש נפוץ בייצוג מספרים.

קיימות שיטות ייצוג אחרות, המבוססות על הבסיס הבינארי, כמו קוד גריי, שיטת המשלים ל-2 המאפשרת ייצוג מספרים שליליים, או ייצוג נקודה צפה של מספרים רציונליים.

באנר של המרכז הבינתחומי הרצליה, המזמין תלמידים למפגש בעניין לימודי תואר שני במדעי המחשב. תאריך המפגש מופיע בבסיס בינארי (המקודד בקוד BCD) , ופירושו 1/4/08

מעבר ממספרים בינאריים למספרים עשרוניים[עריכת קוד מקור | עריכה]

בסיס הספירה העשרונית הוא 10, משום שלספירה זו 10 סימנים.
פירוק מספר עשרוני:

\!\, 1452=1\cdot1000+4\cdot100+5\cdot10+2=1\cdot10^3+4\cdot10^2+5\cdot10^1+2\cdot10^0

אנו רואים כי הבסיס המשותף לכל האיברים הוא 10. בסיס הספירה הבינארית הוא 2 (לספירה זו שני סימנים), לכן נפרק את המספר הבינארי הבא בהתאם לפירוק המספר העשרוני:

\!\, 1101 = 1\cdot2^3+1\cdot2^2+0\cdot2^1+1\cdot2^0=
8+4+0+1=13

מכאן שהמספר 1101 בספירה בינארית שקול למספר 13 בספירה עשרונית.
לכן נציג נוסחה כללית, למעבר מספרה המוצגת בבסיס בינארי לבסיס עשרוני (באגף השמאלי מופיע המספר בספרות בינאריות, ומימין משמעותו בספרות עשרוניות):

\!\, a_1a_2a_3...a_n = a_1\cdot2^{n-1} + a_2\cdot2^{n-2} + a_3\cdot2^{n-3} +... + a_n\cdot2^0


או בנוסחת הנסיגה כשX מייצג את מס' הספרות של המס' הבינארי וY מייצג את הערך העשרוני של המס' הבינארי ללא הספרה השמאלית ביותר וידוע ש a(0) = 0 ו- a(1) = 1


a(n) = 2^{X-1} + Y

לדוגמה

a(1101) = 2^3 + a(101) = 8 + 5 = 13


a(101)= 2^2 + a(01) = 4 + 1 = 5


a(01) = 1

מעבר ממספרים עשרוניים למספרים בינאריים[עריכת קוד מקור | עריכה]

מעבר ממספר עשרוני למספר בינארי יתבצע באמצעות המרה של המספר העשרוני למספרים בחזקת 2 (בסיס 2) וסידורם בסדר כרונולוגי. דוגמה: ניקח את המספר 73. תחילה נמצא את החזקה בבסיס 2 הקרובה ביותר למספר (אך קטנה ממנו). החזקה הקטנה ביותר המתאימה היא: 
\!\, 2^6=64
כדי להגיע למספר 73 נצטרך להוסיף עוד חזקות בעלות בסיס 2. נבדוק אם 
\!\, 2^5
יתאים לנו:


\!\, 2^6 + 2^5 = 64 + 32 = 96 > 73

קיבלנו מספר גדול מהמספר 73. לכן יש לחפש חזקה קטנה יותר.נבדוק אם 
\!\, 2^4
יתאים לנו:


\!\, 2^6 + 2^4 = 64 + 16 = 80 > 73

קיבלנו מספר גדול מהמספר 73. לכן יש לחפש חזקה קטנה יותר.נבדוק אם 
\!\, 2^3
יתאים לנו:


\!\, 2^6 + 2^3 = 64 + 8 = 72 < 73

המספר 72 קטן מהמספר 73, לכן החזקה 
\!\, 2^3
מתאימה לנו. כדי להגיע מ-72 ל-73 נצטרך להוסיף עוד מספר. ברור כי 
\!\, 2^2
ו- 
\!\, 2^1
לא יתאימו לנו, אבל 
\!\, 2^0=1
יתאים לנו. ולכן פירוק המספר 73 לחזקות בעלות בסיס 2 הוא: 
\!\, 73 = 2^6 + 2^3 + 2^0
כדי להגיע למספר הבינארי המתאים, נוסיף את החזקות החסרות בין החזקות הללו:


\!\, 73 = 1\cdot2^6 + 0\cdot2^5 + 0\cdot2^4 + 1\cdot2^3 +0\cdot2^2 +0\cdot2^1+ 1\cdot2^0

כלומר, חזקות שהשתמשנו בהן, הוכפלו ב-1 וחזקות שלא השתמשנו בהם, הוכפלו ב-0. המספר הבינארי שלנו מורכב מהמקדמים של מספרי החזקות. מכאן ש-73 בספירה בינארית הוא: 
\!\, 1001001

שיטה נוספת למעבר ממספרים עשרוניים למספרים בינאריים[עריכת קוד מקור | עריכה]

שיטה נוספת, וקלה יותר,להמרת מספרים מבסיס עשרוני לבסיס בינארי מתבצעת על ידי חלוקה חוזרת של המספר העשרוני ב-2 ובדיקת השארית.

נדגים את השיטה:
כדי להמיר את המספר העשרוני 73 לבסיס בינארי נחלק אותו ב-2.
התוצאה תהיה 36 ושארית של 1 (שהרי 36x2 + 1 = 73).
משמעות השארית 1 היא שבבסיס בינארי הספרה הימנית ביותר היא 1.
נמשיך ונחלק את התוצאה 36 ב-2.
קיבלנו 18 ושארית 0. לכן, עד כה ההמרה הבינארית שלנו היא 01.
נמשיך ונחלק את התוצאה 18 ב-2.
קיבלנו 9 ושארית 0. לכן, עד כה ההמרה הבינארית שלנו היא 001.
נמשיך ונחלק את התוצאה 9 ב-2.
קיבלנו 4 ושארית 1. לכן, עד כה ההמרה הבינארית שלנו היא 1001.
נמשיך ונחלק את התוצאה 4 ב-2.
קיבלנו 2 ושארית 0. לכן, עד כה ההמרה הבינארית שלנו היא 01001.
נמשיך ונחלק את התוצאה 2 ב-2.
קיבלנו 1 ושארית 0. לכן, עד כה ההמרה הבינארית שלנו היא 001001.
נמשיך ונחלק את התוצאה 1 ב-2.
קיבלנו 0 ושארית 1. לכן, עד כה ההמרה הבינארית שלנו היא 1001001.

למעשה, כעת ניתן להמשיך ולחלק את 0 ב-2 אינספור פעמים אך התוצאה תמיד תשאר אפס ושארית אפס.
ולכן זהו המספר הסופי בבסיס בינארי: 1001001

(אם נמשיך את החלוקה ב-2 נקבל את המספר 000001001001..., השווה למספר המצומצם 1001001.)

טבלת המרה בין בסיסי מספרים נפוצים[עריכת קוד מקור | עריכה]

עשרוני: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
הקסדצימלי: 0 1 2 3 4 5 6 7 8 9 A B C D E F 10
אוקטלי: 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20
בינארי: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 10000


ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]


ספרות

ספרות הודיות-ערביותספרות ערביותספרות ארמניותספרות בבליותספרות ברהאמיניותספרות אטרוסקיותספרות עבריותספרות חמרספרות יווניותספרות אטיקותספרות יפניותספרות מאיהספרות מצריותספרות סיניותספרות סוג'ואוספרות קוריאניותספרות קיריליותספרות רומיות

בסיסי ספירה

בסיס אונריבסיס בינאריבסיס אוקטליהשיטה העשרוניתבסיס דואודצימליבסיס הקסדצימליבסיס ויגסימליבסיס סקסגסימלי