מעגל אפולוניוס

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
הגדרת המעגל לפי אפולוניוס. לכל נקודה P היחס d1/d2 קבוע.

מעגל אפולוניוס של זוג נקודות הוא המקום הגאומטרי של כל הנקודות שהיחס בין מרחקיהן אל הנקודות הנתונות הוא קבוע.

המעגל קרוי על שמו של אפולוניוס מפרגה, גאומטריקן מיוון העתיקה.

הגדרה[עריכת קוד מקור | עריכה]

נתונות שתי נקודות A , B. מעגל אפולוניוס הוא המקום הגאומטרי של כל הנקודות P המקיימות AP/BP=k כאשר k קבוע חיובי השונה מ-1 (עבור k=1 מתקבל האנך האמצעי לקטע AB).

שקילות למעגל[עריכת קוד מקור | עריכה]

נוכיח שבמקרה ש-k שונה מ-1, מעגל אפולוניוס הוא מעגל:

תהיינה C,D הנקודות המקיימות את התנאי ונמצאות על הישר AB, כמודגם באיור (כאן נכנסת הדרישה ש-k שונה מ-1. במקרה k=1 יש רק נקודה אחת כזו על הישר, מרכז הקטע AB). תהי P נקודה נוספת על מעגל אפולוניוס. לפי הנתון AP/BP=AC/BC=AD/BD. לכן ממשפט חוצה הזווית ההפוך למשולש \triangle APB נובע ש-PC חוצה את הזווית הפנימית ב-P ו-PD חוצה את הזווית החיצונית ב-P. מכיוון שסכום הזווית הפנימית והחיצונית הוא 180 מעלות, הזווית \angle CPD היא זווית ישרה. כלומר \triangle CPD הוא משולש ישר-זווית החסום במעגל שהקוטר שלו הוא CD. לכן כל P על מעגל אפולוניוס נמצאת על המעגל הנ"ל. באותו אופן ניתן להראות שכל נקודה על המעגל שקוטרו CD נמצאת על מעגל אפולוניוס.

תכונות[עריכת קוד מקור | עריכה]

  • מרכז המעגל נמצא על הישר AB.
  • כל מעגל שעובר דרך הנקודות A ו-B מאונך למעגל אפולוניוס (כלומר, המשיקים שיוצאים מנקודות החיתוך שלהם מאונכים זה לזה).
  • אם מבצעים אינוורסיה יחסית למעגל אפולוניוס, A עובר ל-B ולהפך.
  • לכל נקודה K הנמצאת על המעגל, אם הישר AK חותך את המעגל בנקודה M והישר BK חותך אותו בנקודה L, אזי M ו-L סימטריות ביחס לישר AB (כלומר הוא האנך האמצעי שלהן).