החבורה הליניארית הכללית

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

בתורת החבורות, החבורה הליניארית הכללית ממעלה מעל השדה , היא אוסף המטריצות ההפיכות בעלות שורות ועמודות שאיבריהן שייכים לשדה , ביחס לפעולת הכפל של מטריצות. זוהי חבורה שהאיבר הנייטרלי שלה הוא מטריצת היחידה. זוהי אחת מהחבורות הבסיסיות הנחקרות בתורת החבורות. תת חבורה של החבורה הליניארית הכללית נקראת חבורה ליניארית או בפשטות חבורת מטריצות. שיכון של חבורה מסוימת בתוך החבורה הליניארית הכללית נקרא הצגה ליניארית של החבורה.

את החבורה הליניארית הכללית ניתן להגדיר באופן שקול כאוסף ההעתקות הליניאריות ההפיכות מעל מרחב וקטורי מממד מעל השדה היות שכל המרחבים הווקטוריים בעלי ממד סופי שווה הם איזומורפיים, ברור שמבנה החבורה אינו תלוי במרחב הווקטורי שלפיו היא הוגדרה. למעשה, באופן הזה מגדירים את החבורה הליניארית הכללית כחבורת האוטומורפיזמים של בקטגוריה של מרחבים וקטוריים. כאשר משתמשים בהגדרה הראשונה מסמנים את החבורה בדרך כלל או , וכאשר משתמשים בהגדרה השנייה - .

המאפיינים האלגבריים של אלגברת המטריצות, או לחלופין אלגברת ההעתקות הליניאריות, כגון קיום הדטרמיננטה, מאפשרים להגדיר מספר תתי חבורות באופן טבעי. לדוגמה החבורה הליניארית המיוחדת, , היא תת-החבורה של החבורה הליניארית הכללית שמכילה את כל המטריצות בעלות דטרמיננטה 1. היא תת חבורת הקומוטטורים של , והיא בעצמה חבורה מושלמת אלא אם כן והשדה הוא בגודל 2 או 3.

החבורה הליניארית הכללית אינה אבלית, כל עוד איננו 1. כאשר , החבורה הליניארית הכללית היא פשוט החבורה הכפלית של השדה .

כאשר השדה מעליו החבורה מוגדרת הוא שדה המספרים הממשיים או המרוכבים היא חבורת לי מממד . כאשר השדה מעליו החבורה מוגדרת הוא שדה סגור אלגברית אזי היא חבורה אלגברית (חבורה שהיא גם יריעה אלגברית).