משפט הגבול המרכזי

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

עיינו גם בפורטל

P mathematics.svg

פורטל המתמטיקה הוא שער לכל הנושאים הקשורים במתמטיקה. ניתן למצוא בו קישורים אל תחומי המשנה של ענף המתמטיקה, מושגי יסוד בתחום, היסטוריה של המתמטיקה, מתמטיקאים חשובים ועוד.

משפט הגבול המרכזי (באנגלית: Central limit theorem או בקיצור CLT) הוא משפט יסודי בתורת ההסתברות, העוסק בהתפלגות הגבולית של הממוצע המצטבר של סדרת משתנים מקריים. המשפט קובע שתחת תנאים מסוימים, התפלגות הממוצע של סדרת משתנים מקריים בלתי תלויים מתקרבת להתפלגות נורמלית לאחר תקנון מסוים, גם כאשר המשתנים עצמם אינם מתפלגים נורמלית. מאחר שרבים מהערכים הנמדדים בטבע מורכבים למעשה מסכום מספר רב של אירועים אקראיים, המשפט מסביר את הדומיננטיות של ההתפלגות הנורמלית. כמו כן המשפט מאפשר שימוש בטכניקות שפותחו תחת הנחת נורמליות על ההתפלגות של המשתנה המקרי גם כאשר הוא אינו מתפלג נורמלית. את המשפט הכללי הוכיח אלכסנדר ליאפונוב.

הגרסה החלשה[עריכת קוד מקור | עריכה]

תהי סדרה של משתנים מקריים בלתי תלויים בעלי אותה התפלגות, שיש לה תוחלת ושונות . נסמן ב- את הממוצע. לפי החוק החזק של המספרים הגדולים, הגבול של הסדרה הוא אפס (בהסתברות 1). משפט הגבול המרכזי מספק מידע מפורט בהרבה: סדרת המשתנים המקריים מתכנסת בהתפלגות אל ההתפלגות הנורמלית הסטנדרטית: , כאשר .

הגרסה החזקה[עריכת קוד מקור | עריכה]

תהי סדרה של משתנים מקריים בלתי תלויים, המקיימת:

  1. (אין כאן פגיעה בכלליות, כי מכל משתנה מקרי ניתן להחסיר את התוחלת שלו).
  2. (שונות סופית).

נסמן . אם , אז סדרת המשתנים המקריים מתכנסת בהתפלגות אל ההתפלגות הנורמלית הסטנדרטית.

דוגמה[עריכת קוד מקור | עריכה]

נראה כיצד ממשפט הגבול המרכזי נובע כי אם - המשתנה מתפלג בינומית, אז כאשר גדול מתקיים , כלומר מתפלג בקירוב כמו משתנה נורמלי עם תוחלת ושונות , כאשר ו- .

ניתן לראות משתנה בינומי כסכום סדרת משתנים מקריים שכל אחד מהם מקבל 1 בהסתברות ואחרת מקבל 0 (ניסויי ברנולי). התוחלת של משתנה כזה היא והשונות שלו היא . לכן, כאשר גדול, נובע ממשפט הגבול המרכזי:

כאשר .

יישומים[עריכת קוד מקור | עריכה]

בתורת ההסתברות[עריכת קוד מקור | עריכה]

בספרות יש מספר דוגמאות מעניינות ושימושיות ויישומים הקשורים למשפט הגבול המרכזי. מקור אחד מציין את הדוגמאות הבאות:

  • התפלגות המרחק הכולל שעוברים בהילוך מקרי (מוטה או חסר הטיה) ייטה להתפלג נורמלי.
  • הטלת מטבע מספר רב של פעמים יניב את ההתפלגות הנורמלית עבור המספר הכולל של "עץ" (או "פלי" באופן שקול).

מנקודת מבט אחרת, משפט הגבול המרכזי מסביר את ההופעה התדירה של "עקומת הפעמון" בהערכות צפיפות המופעלות על מידע מהעולם האמיתי. במקרים כמו רעש אלקטרוני, ציוני מבחן וכו', נוכל בדרך כלל להתייחס לתצפית בודדת כממוצע ממושקל של מספר רב של גורמים קטנים. אם נשתמש בהכללות של משפט הגבול המרכזי נוכל לראות שזה לרוב יניב (אך לא תמיד) התפלגות סופית שהיא בערך נורמלית.

באופן כללי, ככל שתצפית היא יותר כמו סכום של משתנים מקריים בלתי תלויים עם השפעה זהה על התוצאה, היא מתאפיינת ביותר "נורמליות". זה מצדיק את השימוש הנפוץ בהתפלגות זו כדי להשלים את ההשפעה של משתנים מקריים שלא נצפו במודלים כמו במודל הליניארי.

בסטטיסטיקה[עריכת קוד מקור | עריכה]

בטכניקות של בדיקת השערות המבחן הסטטיסטי מנסה להפריד בין שתי התפלגויות, בין ההתפלגות תחת השערת האפס, קרי ההשערה הקודמת למבחן, לבין התפלגות אחרת. לשם כך דוגם החוקר מספר תצפיות מהאוכלוסייה שהוא בוחן, ומחשב סטטיסטי מסוים אותו הוא רוצה לבחון. לאחר מכן הוא בודק עד כמה התוצאה שיצאה לסטטיסטי סבירה תחת ההתפלגות של השערת האפס. לסבירות של תוצאה מסוימת קוראים ערך ה-p (באנגלית: p-value) של התוצאה. במידה ולא סביר כי הסטטיסטי יצא מההתפלגות של השערת האפס הוא דוחה את השערה זו.

לרוב, התכונה באוכלוסייה אותה מבצע המבחן בוחן אינה מתפלגת נורמלית, אך באמצעות שימוש במשפט הגבול המרכזי הוא יודע שאם הסטטיסטי הוא ממוצע של אותה התכונה, ומתקיימות שאר ההנחות הנדרשות לשם הפעלת המשפט על אותה התכונה, אזי הוא יכול להניח כי עם מספיק תצפיות הסטטיסטי יתפלג נורמלית. בכך הוא יכול להשוות אנליטית את הממוצע אותו דגם להסתברות שאותו ממוצע ייצא תחת מהתפלגות נורמלית. למבחן סטטיסטי שכזה, שיודע את השונות לאותה תכונה באוכלוסייה קוראים מבחן Z. הכללה של מבחן Z למקרים בהם שונות התכונה אינה ידועה נקרא מבחן t.

מחוץ לתורת ההסתברות[עריכת קוד מקור | עריכה]

למשפטי גבול בתורת ההסתברות יש יישומים גם מחוץ לתורת ההסתברות.

למשל, בעזרת משפט הגבול המרכזי ניתן לחשב את הגבול .

כדי לעשות זאת, לוקחים משתנים מקריים בלתי תלויים המתפלגים אחיד בקטע (עם מידת לבג). כל משתנה כזה הוא בעל תוחלת אפס ושונות . משתנים אלו "מייצגים" את המשתנים במרחב האוקלידי ולכן הם בלתי תלויים. אם כן האינטגרל שווה לתוחלת של המ"מ .

לפי משפט הגבול המרכזי, מתקיים . כעת, ניתן להסיק מהמשפט גם התכנסות חלשה (ולמעשה התנאי שקול להתכנסות בהתפלגות) - כלומר, לכל פונקציה רציפה וחסומה מתקיים ; במקרה שלנו, היא רציפה וחסומה, ולכן הגבול שווה ל-

( היא הפונקציה האופיינית של ).

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא משפט הגבול המרכזי בוויקישיתוף