פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא


כתב החידה מתוך ספרו של ז'ול ורן "מסע אל בטן האדמה"

קריפטוגרפיה היא ענף במתמטיקה ובמדעי המחשב העוסק באלגוריתמים של אבטחת מידע על רבדיה השונים, ובביסוס המתמטי שלהם. תחום הקריפטוגרפיה מאגד תחתיו נושאים רבים ובהם: הצפנה של מידע חסוי ממי שלא הוסמך לראותו; אימות זהות (כמו באמצעות סיסמה) ובקרת הרשאות גישה; פרוטוקולים להוכחת ידיעה, כמו פרוטוקול אתגר מענה והוכחה באפס ידע; מנגנוני חתימה דיגיטלית לאימות זהות המקור ומניעת התכחשות, והבטחת שלמות המידע.

קריפטוגרפיה מודרנית נמצאת בשימוש ביישומים מעשיים רבים, החל מאבטחת רשתות תקשורת (גם אלחוטיות כמו רשת סלולרית), דרך דואר אלקטרוני, מסחר אלקטרוני, כרטיסי אשראי ואבטחת מסופי משיכת מזומנים.


Circle-trig6.svg

מעגל היחידה הטריגונומטרי הוא כלי הנותן צורה נוחה לתיאורן של הפונקציות הטריגונומטריות ומאפשר את הרחבתן אל מעבר למחזור אחד. בתמונה משורטטות על המעגל הפונקציות הטריגנומטריות המרכזיות, כמו גם מספר פונקציות אשר אינן נמצאות יותר בשימוש, כדוגמת הפונקציה \textrm{exsec} \, \theta \,.


העיסוק בשאלה 'מהי אמת' העסיק את הפילוסופיה במשך אלפי שנים, וסביבו מבוסס ענף הלוגיקה. במאה ה-20 נוסתה גישה חדשה לשאלה העתיקה הזאת, בניסיון לזהות משפט נכון כמשפט בר הוכחה. הרעיון, הקרוי 'הפרוגרמה של הילברט', היה לנסח בצורה פשוטה את האקסיומות הבסיסיות ואת הדרכים להגיע ממשפט נכון אחד לאחר.

הפרוגרמה הזאת נחלה מפלה ניצחת בזכות עבודותיו של הלוגיקאי קורט גדל. גדל הצליח להראות שישנם משפטים נכונים שלא ניתן להוכיח אותם. ההוכחה של גדל, הנקראת משפטי האי שלמות של גדל מבוססת על וריאציה של פרדוקס השקרן. גדל הצליח ליצור את המשפט המתייחס לעצמו "המשפט הזה אינו בר הוכחה", וליצור פרדוקס.


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: MegaMath (באנגלית)

MegaMath הוא אתר המביא לתלמידי בית הספר היסודי את הרעיונות והבעיות של המתמטיקה המודרנית: לוגיקה, האינסוף, תורת הגרפים, ועוד. זהו אתר חובה לשונאי מתמטיקה: אלה שמעולם לא הבינו דבר בתחום זה, אך פתוחים להזדמנות לגלות את יופיו. את האתר העניקה לעולם המעבדה הלאומית לוס אלמוס, המוכרת יותר בתרומתה לפיתוח נשק גרעיני.


אוגוסטין לואי קושי

אוגוסטן לואי קוֹשי (Augustin Louis Cauchy בצרפתית) (21 באוגוסט 1789 - 23 במאי 1857) הוא מתמטיקאי צרפתי, שידוע בעיקר בזכות תרומתו הרבה לאנליזה המודרנית והביסוס הלוגי והפורמלי של החשבון האינפיניטסימלי. קושי היה מתמטיקאי עמוק ויסודי, שנקט בשיטות עבודה והוכחה מדוקדקות וקפדניות (ריגורוזיות). התרבות המתמטית של קושי השפיעה רבות על תלמידיו ועל ממשיכיו ומהווה יסוד חשוב בתרבות המתמטית של ימינו.

מלבד הנחלת תרבות ההוכחה הריגורוזית תרם קושי רבות בתחומים רבים של המתמטיקה והפיזיקה המתמטית.


Article MediumPurple.svg


Cquote2.svg

מדעי המחשב אינם עוסקים במחשב יותר משאסטרונומיה עוסקת בטלסקופ.

Cquote3.svg
אדסחר דייקסטרה


בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Arnon avron - godel.jpg

ארנון אברון, ‏משפטי גדל ובעיית היסודות של המתמטיקה, סדרת אוניברסיטה משודרת, בהוצאת משרד הביטחון - ההוצאה לאור, 1998

כשאר הספרים בסדרת אוניברסיטה משודרת, גם ספר זה מבוסס על הרצאות שנתן מחברו בגלי צה"ל. הספר עוסק בחקר יסודות המתמטיקה, שזכה למחקר אינטנסיבי בעשורים הראשונים של המאה העשרים והגיע לשיאו במשפטי האי שלמות של גדל. הספר עוסק בנושאים מתחום ההיסטוריה של המתמטיקה והפילוסופיה של המתמטיקה. המחבר, ארנון אברון, הוא פרופסור בחוג למדעי המחשב באוניברסיטת תל אביב. בפתח דבר לספרו הוא מציין שהספר "פונה הן לקוראים החסרים כמעט כל רקע מתימטי והן למתמטיקאים מקצועיים שהנושאים הנידונים כאן אינם שייכים לתחומי התמחותם".

בעת שרטוט מפה מדינית, כל שתי מדינות בעלות קו גבול משותף נצבעות בצבעים שונים, כדי שיהיה קל להבחין ביניהן. כדי להוזיל את עלויות הדפוס, נרצה להשתמש במספר צבעים קטן ככל האפשר. לוח שחמט הוא דוגמה למפה שבה כל מדינה גובלת בארבע מדינות אחרות, אולם די בשני צבעים כדי לצבוע את המפה. האם יש מפה שלצביעתה נחוצים שלושה צבעים? ארבעה צבעים? חמישה צבעים?


לחידות נוספות, לחידות קשות יותר


משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

משפט ארבעת הצבעים הוא תוצאה בולטת בהיסטוריה של הטופולוגיה הקומבינטורית ושל תורת הגרפים. לפי המשפט, אפשר לצבוע כל מפה מדינית, באופן שכל שתי מדינות בעלות קו גבול משותף נצבעות בצבע שונה, תוך שימוש בארבעה צבעים בלבד. מתמטיקאים החלו לחקור את הבעיה באמצע המאה התשע-עשרה. היא נודעה כ'השערת ארבעת הצבעים', וזכתה ל'הוכחות' שגויות רבות.

צביעה הדורשת לפחות ארבעה צבעים

בניסוח מודרני, המשפט מבטיח שלכל גרף מישורי קיימת צביעת קודקודים בארבעה צבעים. אנשי תורת הגרפים מכירים הוכחות קלות יחסית לכך שקיימת צביעה בחמישה צבעים, אבל ההוכחה לכך שאפשר להסתפק בארבעה נמצאה רק ב- 1976, והיא כרוכה בחיפוש ממוחשב על-פני אלפי מקרים. זו הייתה ההשערה המפורסמת הראשונה שהוכחה בעזרת מחשב, ובתחילה לא הייתה הסכמה כללית על תקפות ההוכחה, בעיקר בנימוק שלא הוכחה נכונותן של תוכניות המחשב עצמן. מאז נעשו ניסיונות רבים למצוא הוכחה סטנדרטית יותר, שיכולה לעמוד לביקורת עמיתים. הוכחה כזו עדיין לא נמצאה.

האיור משמאל מציג מפה סכמטית של ארבע מדינות, שלכל אחת מהן יש גבול משותף עם כל האחרות. לכן לא ניתן לצבוע אותה בפחות מארבעה צבעים.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


אריתמטיקה (מהמילה היוונית: αριθμός, שמשמעותה מספר) היא הענף העתיק והבסיסי ביותר במתמטיקה. חוקי האריתמטיקה הבסיסיים משמשים כל אדם מודרני לצורך ביצוען של משימות יום-יומיות פשוטות כגון הכנת מזון ותכנון כלכלת הבית. לאריתמטיקה המתקדמת יותר ולתחומים הקרובים אליה, הכוללים פעולות מתמטיות מסובכות, יש שימוש רב בתחומי המדע, ההנדסה והטכנולוגיה השונים.

במובנה המצומצם, המילה מתייחסת לענף במתמטיקה העוסק בפעולות הקשורות במספרים, כגון ארבע פעולות החשבון או פעולות מורכבות יותר. מתמטיקאים משתמשים לעתים במונח 'אריתמטיקה' כתחליף לתורת המספרים. גבולותיו של ענף מתמטי זה אינם תחומים באופן חד, והם השתנו במרוצת השנים. באופן עקרוני, עוסקת האריתמטיקה במספרים, ביצוע פעולות עליהם, חקירת המאפיינים שלהם וסוגיהם מחד, ובאלגוריתמים ומושגים בעלי "קרבה" רעיונית או תוכנית לתחום זה. כך, למשל, משתמשים לעתים במונח "אריתמטיקה" גם לצורך חקירת מספרים ראשוניים או בעיות חישוביות שונות בגאומטריה אלגברית.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים


משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים


P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים