פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא


הנחות היסוד לציור בפרספקטיבה

גאומטריה פרויקטיבית היא גאומטריה לא אוקלידית, שבה אקסיומת המקבילים מוחלפת באקסיומה אחרת: כל שני ישרים במישור נפגשים בנקודה.

הגאומטריה הפרויקטיבית נולדה מתוך הצרכים המעשיים של אמני הציור. לעומת הציור הרוחני והסמלי של ימי הביניים, לקראת הרנסאנס עלתה קרנו של הציור המדויק – הדומה לנראה בעין. החייאת הכתבים הקלאסיים והאמונה שבבסיס הטבע עומדים עקרונות מתמטיים, הובילה את הציירים והמתמטיקאים בני התקופה לנסות ולמצוא שיטה סדורה לציור העולם התלת-ממדי על בד ציור דו-ממדי.

האמנים הראשונים בתחום זה שמשנתם ידועה לנו היו פיליפו ברונלסקי ולאונה בטיסטה אלברטי, שחיבר את הטקסט הראשון (הידוע כיום) בנושא, שכותרתו "על הציור" – De pictura. אנשי מפתח מאוחרים יותר בתחום זה הם פיירו דלה פרנצ'סקה, לאונרדו דה וינצ'י, אלברכט דירר ואחרים.

המתמטיקאי ז'ראר דזרג (Gérard Desargues) היה ממניחי היסודות התאורטיים לגאומטריה הפרויקטיבית, ועסק בה יחד עם בלז פסקל.


סרטון של זום לתוך קבוצת מנדלברוט

סרטון של זום לתוך קבוצת מנדלברוט, קבוצה של מספרים מרוכבים אשר הגבול של ייצוגן הגאומטרי מהווה את אחת הדוגמאות המוכרות ביותר של פרקטלים במתמטיקה.


פרדוקס יום ההולדת הוא שמה של תוצאה בתורת ההסתברות לפיה בקבוצה של 23 אנשים או יותר, שנבחרו באקראי, הסיכויים לכך ששניים מהם נולדו באותו יום בשנה עולים על חצי. תוצאה זו אינה פרדוקס במובן המקובל של המילה, שכן אין בה סתירה לוגית, אך היא סותרת את האינטואיציה של מרבית האנשים, הסבורים כי ההסתברות תהיה קטנה בהרבה מחצי משום שמספר הימים שבהם אפשר להוולד גדול בהרבה מ-23. תוצאה זו הינה מקרה פרטי של עובדה כללית יותר, שיש לה חשיבות רבה ביישומים של תורת ההסתברות. אגב, כאשר מספר האנשים בקבוצה עולה ל-50 אנשים שנבחרו באקראי, הסיכויים למציאת שניים שנולדו באותו יום בשנה מטפסים למעל 97%.


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: MegaMath (באנגלית)

MegaMath הוא אתר המביא לתלמידי בית הספר היסודי את הרעיונות והבעיות של המתמטיקה המודרנית: לוגיקה, האינסוף, תורת הגרפים, ועוד. זהו אתר חובה לשונאי מתמטיקה: אלה שמעולם לא הבינו דבר בתחום זה, אך פתוחים להזדמנות לגלות את יופיו. את האתר העניקה לעולם המעבדה הלאומית לוס אלמוס, המוכרת יותר בתרומתה לפיתוח נשק גרעיני.


Gottfried Wilhelm von Leibniz.jpg

גוטפריד וילהלם פון לייבניץ (1 ביולי 1646 בלייפציג14 בנובמבר 1716 בהנובר) היה איש אשכולות גרמני שכתב בעיקר בלטינית וצרפתית.

הוא התלמד בתחום המשפטים והפילוסופיה, ושירת כמשרת בשני בתי אצולה גרמניים מרכזיים. לייבניץ שיחק תפקיד מרכזי בפוליטיקה ובדיפלומטיה האירופאית של תקופתו. הוא בעל מקום בולט גם בהיסטוריה של הפילוסופיה ובהיסטוריה של המתמטיקה.

לייבניץ נחשב לאחד מאבות החדו"א אותה פיתח במקביל לניוטון ורבים מהסימנים והמושגים המשמשים היום הענף הם פרי קביעתו. כמו כן, ידוע לייבניץ בשל פיתוח הבסיס הבינארי. לייבניץ היה הראשון לראות שהמקדמים של מערכת משוואות לינאריות יכולים להתארגן במערך, שכעת נקרא מטריצה, אשר ניתן לבצע עליו פעולות עד לקבלת הפתרון של המערכת. כמו כן השתמש גם ברעיון של דטרמיננטה 50 שנה לפני גבריאל קרמר. כמו כן, תרם רבות לתחומי האלגברה הבוליאנית והלוגיקה הסימבולית.


Article MediumPurple.svg


Cquote2.svg

שטח מרובע שיהיה עומד הזווית יהיה מידתו ה' אלפים אמה, לא יִוָדַע צלע אותו שטח, אלא בקרוב, לפי שה' אלפים הוא חשבון בלתי גדור וגדרו בקרוב שבעים אמה וה' שבעיות אמה. והדבר בכאן בזה החשבון כמו שזכרתי לך במה שקדם בייחוס אלכסון עגולה למסבבה . כי לא יגיע לעולם לידיעת גדר החשבון, שאינו גדור אלא בקירוב, ואין זה לחסרון דעתנו אלא מפני טבע זה החשבון.

Cquote3.svg
רמב"ם, פירוש למסכת עירובין.

דברים אלו מתייחסים להיותו של השורש הריבועי של 2 מספר אי רציונלי. להרחבה ראו היסטוריה של האריתמטיקה.


בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום: לנסלוט הוגבן (אנ'), מתמטיקה למיליון, הוצאת "ניצנים", שנות ה-50 של המאה ה-20.

הספר יצא לאור במקורו באנגלית ב-1936 וזכה לפופולריות רבה. הספר סוקר את התפתחות המתמטיקה מהיוונים ועד למחצית המאה ה-19 בערך, עם דגש על השלכות והשפעת הידע המתמטי על תחומי החיים, כמו ניווט, כלכלה, טכנולוגיה ועוד. לסופר נקודת מבט מרקסיסטית, והספר כתוב בצורה מרתקת. לא מיועד למי שמעוניין ללמוד מתמטיקה מתקדמת, אך מספק נקודת מבט מעניינת, מקורית ומרתקת על ההיסטוריה של מתמטיקה.

עליך להגיע לעיר הקרובה הנמצאת במרחק 700 קילומטר. ברשותך מטיל זהב השוקל 7 קילוגרם ואותו ניתן לחתוך אך ורק לקילוגרמים שלמים. הדרך היחידה להגיע אל העיר היא בעזרת נהג הגובה עבור שירותיו קילוגרם זהב לכל 100 ק"מ. אולם, הנהג דורש בתחילת כל 100 קילומטר תשלום עבור 100 הקילומטרים הבאים, ויברח אם יקבל יותר מקילוגרם אחד בבת אחת. באפשרותך לחתוך את מטיל הזהב פעמיים בלבד. כיצד תחלק את המטיל?


לחידות נוספות, לחידות קשות יותר


משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

משפט ארדש-סקרש במתמטיקה דיסקרטית הוא משפט הקובע כי בכל סדרה באורך \ ab + 1 של מספרים ממשיים שונים יש תת-סדרה עולה באורך  \ a+1 או תת-סדרה יורדת באורך  \ b+1. המשפט הדוק - הטענה אינה נכונה עבור סדרה כללית באורך  \ ab.

המשפט הוא מטיפוס רמזי - אין אי סדר מוחלט - בתוך כל ים גדול דיו של כאוס יש איים של סדר.

את המשפט הוכיחו פאול ארדש וגאורגה סקרש, במאמר שפרסמו בשנת 1935.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


תורת הקבוצות היא ענף במתמטיקה העוסק בתכונותיהן של קבוצות, ומשמש כבסיס לאקסיומטיזציה של המתמטיקה. תורת הקבוצות מניחה את היסודות לחלקים נרחבים של המתמטיקה, כאשר מהאקסיומות שלה נובעים המשפטים הבסיסיים שעליהם חלקים אלה מתבססים. בין היתר תורת הקבוצות דנה במושג הסדר של קבוצה (הגדרה ופיתוח הנושא של סדר האיברים בקבוצה), הגודל - העוצמה שלה (מבחינה אינטואיטיבית - כמה איברים יש בקבוצה), ובבניית מערכות המספרים הבסיסיות והוכחת תכונותיהן - הטבעיים, השלמים, הרציונליים, הממשיים והמרוכבים.

הענף התפתח אינטואיטיבית עם השנים על ידי מתמטיקאים חובבנים ומקצועיים כאחד, בשיטה שמאוחר יותר התגלתה כלא אמינה. הבעיה התחילה כאשר נמצאו פרדוקסים וסתירות בשלבים בסיסיים של המתמטיקה (לדוגמה הפרדוקס של ראסל). סתירות אלו נובעות מחוסר עקביות, מוסכמות ושפה אחידה, ולכן החליטו לפתח ולהגדיר את תורת הקבוצות מחדש.

  • תורת הקבוצות הנאיבית: ניסוח אינטואיטיבי של הרעיונות היסודיים של תורת הקבוצות, כפי שהתפתחה במשך השנים.
  • תורת הקבוצות האקסיומטית: גרסה פורמלית, בעלת ביסוס אקסיומטי מוצק, של תורת הקבוצות, שפותחה כדי למנוע סתירות ופרדוקסים כדוגמת הפרדוקס של ראסל.
למונחון
לרשימת כל הערכים בתחום

מבט על תחומים נוספים


משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים


P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים