פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


Pythagoras1.svg

משפט פיתגורס הוא משפט בגאומטריה, שהוא אחד המשפטים המתמטיים הנודעים ביותר. הוא קובע שסכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר-זווית, שווה לשטח הריבוע הבנוי על היתר (הניצבים הם שתי צלעות הזווית הישרה, והיתר הוא הצלע הארוכה של המשולש). בניסוח פורמלי: אם אורכי הניצבים במשולש ישר-זווית הם ו-, ואורך היתר הוא , אז: . המשפט ההפוך, הקובע שמשולש שבו ריבוע צלע אחת שווה לסכום ריבועי הצלעות האחרות הוא ישר-זווית, נכון גם הוא.

המשפט נקרא על שם המתמטיקאי והפילוסוף היווני פיתגורס, שחי במאה ה-6 לפנה"ס על אף שאת המשפט עצמו הכירו בתרבויות עתיקות מאות שנים לפני זמנו.

בעיה מפורסמת מתורת המספרים היא מציאת משולשים ישרי זווית שאורכי הצלעות שלהם הינם מספרים שלמים, כלומר למצוא פתרונות שלמים למשוואה הדיופנטית: . שלשה של מספרים כאלה קרויה שלשה פיתגורית, וידוע שיש אינסוף שלשות מסוג זה. דוגמה לשלשה פיתגורית הם המספרים 3,4,5 שכן הם מקיימים את המשוואה: .


Euler.png
זוויות אוילר הן שלוש זוויות במרחב האוקלידי המשמשות לתאר סיבוב בשלושה ממדים. כיוון שכל סיבוב כללי במרחב תלת-ממדי ניתן לייצוג על ידי הרכבה של שלושה סיבובים, ניתן לתאר כל סיבוב נתון על ידי שלוש זוויות אלו. לזוויות אוילר שימושים בפיזיקה ובפרט בתחום המכניקה של גוף קשיח.


כדור החסום בגליל בעל גובה וקוטר זהים
  • על מצבתו של ארכימדס חרוט הישגו המתמטי המועדף - כדור החסום בגליל בעל גובה וקוטר זהים. ארכימדס הוכיח שנפחו ושטח פניו של הכדור מהווים 2/3 מאלו של הגליל.
  • לודולף ואן צאולן חישב את π בדיוק של 20 ספרות, וכעבור שנים אחדות הגיע לדיוק של 35 ספרות. הוא היה כל כך גאה בהישג זה, עד שציווה לכתוב ספרות אלה על מצבתו.


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: USA Mathematical Talent Search (באנגלית)

אתר של חידות ובעיות מתמטיות, חלקן קשות למדי, אף שהן מבוססות על מתמטיקה תיכונית. האתר נתמך על ידי ה-NSA, גוף המודיעין הגדול בעולם, שפיתוח הכישורים המתמטיים מבטיח לו את עובדיו העתידיים.


Carl Friedrich Gauss.jpg

יוהאן קרל פרידריך גאוס (גרמנית: Carl Friedrich Gauß, 30 באפריל 1777 - 23 בפברואר 1855) מתמטיקאי, פיזיקאי ואסטרונום גרמני, מגדולי המתמטיקאים של כל הזמנים. גאוס מכונה נסיך המתמטיקאים, והוא מוזכר בנשימה אחת יחד עם ארכימדס וניוטון.

גאוס תרם רבות בתחומי האלגברה, תורת המספרים, גאודזיה, תורת הכבידה, תורת החשמל והמגנטיות, אסטרונומיה, אופטיקה ועוד.

גאוס נולד בבראונשווייג שבסקסוניה תחתית כבן יחיד למשפחת פועלים ענייה. גאוס עצמו סיפר כי עמד על סוד הפעולות האריתמטיות עוד בטרם ידע לדבר. קיימים סיפורים רבים על גאונותו כילד, רובם נחשבים כאגדות. אחד מהם, המובא בספרו של אריק טמפל בל, Men of Mathematics, הוא כי עוד בטרם מלאו לו 3 שנים, נתגלה להוריו כשרונו המתמטי הייחודי: אביו עסק בהכנת גיליון השכר השבועי של הפועלים שבהשגחתו וביצע במשך דקות ארוכות את החישובים המסובכים. כאשר סיים את החישוב, אמר לו בנו שנפלה טעות בחישוב, ונקב בתוצאה שחישב בראשו.



מתמטיקאי הוא אדם שיכול למצוא אנלוגיה בין משפטים. מתמטיקאי טוב הוא כזה שמוצא אנלוגיה בין הוכחות. מתמטיקאי מעולה שם לב לאנלוגיה בין תורות. המתמטיקאי המושלם הוא זה שיכול לראות אנלוגיה בין האנלוגיות.


בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Poincaré conjecture he.jpg

דונל או'שיי, השערת פואנקרה, אריה ניר הוצאה לאור, 2008

הספר מספר את סיפורו של המתמטיקאי הצרפתי אנרי פואנקרה, מגדולי המתמטיקאים של מפנה המאה, שבשנת 1904 ניסח את השערת פואנקרה - השערה בתחום הטופולוגיה, שעל הניסיונות להוכיחה עמלו מתמטיקאים כמעט מאה שנים. בסדרה של מאמרים שכתב בשנים 2002 ו-2003, הציג המתמטיקאי הרוסי-יהודי גריגורי פרלמן את קווי המתאר של הוכחה להשערה, והפרטים החסרים הושלמו בשנים שלאחר מכן בידי מתמטיקאים אחרים.

שלטון הקמר רוז' בקמבודיה מחליט להוציא להורג עשרה מתמטיקאים, אך מאפשר ליד הגורל להתייצב לצדם. המתמטיקאים מתבשרים על כך שהם יועמדו בטור, כך שכל אחד יוכל לראות את כל מי שלפניו בטור, ועל הראש של כל אחד מהם יונח כובע בצבע כחול או אדום. לאחר מכן הראשון בטור (זה שרואה את כל האחרים) יתבקש לנחש את צבע הכובע שעל ראשו. אם הוא צודק חייו יינצלו ואם הוא טועה, יירו בו בראש במקום. לאחר מכן ימשיכו אל הבא אחריו בטור וכך הלאה. האם המתמטיקאים יכולים למצוא אסטרטגיה שתבטיח שלפחות חלק מהם יישארו בחיים? כמה מהמתמטיקאים אפשר להציל?


חידת בונוס: הפעם, מעמידים (אלף אפס) מתמטיקאים בטור, ונניח שכל אחד יכול לראות את כל הכובעים שלפניו. מצאו:

  1. אסטרטגיה בה יינצלו כמעט כל המתמטיקאים, כאשר אף אחד לא שומע מה אמרו האחרים.
  2. אסטרטגיה בה יינצלו כל המתמטיקאים פרט לאחד, כאשר כל אחד שומע מה אמרו האחרים.

הערות:

  1. כאשר מדובר על "כמעט כל המתמטיקאים", הכוונה היא לכולם פרט למספר סופי.
  2. החידה ברמת קושי גבוהה. דרוש ידע בסיסי בתורת הקבוצות על מנת לפתור אותה כהלכה.


בונוס נוסף, למיטיבי לכת בלבד: מצאו פתרון לסעיף 1 בחידת הבונוס עבור מספר סופי כלשהו של צבעי כובעים, ועבור צבעים שונים.


משפטים מפורסמים
השערות מפורסמות
מבט אל הלוח – משפט או השערה מפורסמים

משפט רייס הוא משפט מרכזי בתחום החישוביות, שעוסק ביכולת של אלגוריתמים לחקור אלגוריתמים אחרים. המשפט קובע שאין תוכנית מחשב שמקבלת כקלט תוכנית מחשב אחרת, ומכריעה האם הפונקציה שמחשבת תוכנית מחשב זו היא בעלת תכונה מסוימת "לא-טריוויאלית" או לא. (כלומר, תכונות אשר מאפיינות חלק מהפונקציות שמחושבות בידי תוכנית מחשב, אך לא את כולן) יש לשים לב שהתכונה היא תכונה של הפונקציה, ולא של תוכנית המחשב עצמה. באופן אינטואיטיבי המשפט טוען שתוכנית מחשב אינה יכולה לדעת מה תוכנית מחשב אחרת עושה (כי אז היא הייתה צריכה להריץ אותה, וזה שקול לבעיית העצירה).

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


תורת הקודים היא תחום במתמטיקה ובמדעי המחשב שעוסק בהעברה יעילה של מידע דרך מערכת מציאותית שיוצרת שגיאות ברצף. כאשר מעבירים מידע דרך מוליך טוב ככל שיהיה (גלי רדיו, קווי טלפון), נופלות טעויות במידע כתוצאה מרעשי רקע שנוצרים מסיבות טכניות בעיקר. שגיאה קטנה ככל שתהיה יכולה לעוות את המידע המתקבל ולהפוך אותו לחסר משמעות, או לבעל משמעות שונה מהרצוי. הבעיה קיימת מאז ומעולם גם בשפת הדיבור והכתיבה. ניתן לראות טעויות דפוס שנובעות מהחלפת אותיות כמעט בכל ספר שיוצא לשוק. בעיה זו נעשתה חריפה במיוחד בתקשורת בין מחשבים, בה שינוי של ביט אחד במסר יכול להרוס את החישוב כולו.

בתורת הקודים מפותח מושג הקוד וכן גם כלים שמאפשרים הבחנה ותיקון שגיאות במידע המתקבל.




P computing.svg P At sign.png P physics-2.png P chemistry.svg P Economy.png P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים