פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא


האריתמטיקה והרטוריקה. פסלם של ניקולא וג'ובאני פיסאנו, פונטנה מאג'ורה, פראג

אריתמטיקה (מהמילה היוונית "אריתמוס" שמשמעותה מספר) היא הענף העתיק והבסיסי ביותר במתמטיקה. חוקי האריתמטיקה הבסיסיים משמשים כל אדם מודרני לצורך ביצוען של משימות יום-יומיות פשוטות כגון הכנת מזון ותכנון כלכלת הבית. לאריתמטיקה המתקדמת יותר ולתחומים הקרובים אליה, הכוללים פעולות מתמטיות מסובכות, יש שימוש רב בתחומי המדע, ההנדסה והטכנולוגיה השונים.

במובנה המצומצם, המילה מתייחסת לענף במתמטיקה העוסק בפעולות הקשורות במספרים, כגון ארבע פעולות החשבון או פעולות מורכבות יותר. מתמטיקאים משתמשים לעתים במונח "אריתמטיקה" כתחליף לתורת המספרים. גבולותיו של ענף מתמטי זה אינם תחומים באופן חד, והם השתנו במרוצת השנים. באופן עקרוני, עוסקת האריתמטיקה במספרים, ביצוע פעולות עליהם, חקירת המאפיינים שלהם וסוגיהם, ובאלגוריתמים ומושגים בעלי קרבה רעיונית או תוכנית לתחום זה. כך, למשל, משתמשים לעתים במונח "אריתמטיקה" גם לצורך חקירת מספרים ראשוניים או בעיות חישוביות שונות בגאומטריה אלגברית.



Sierpinski pyramid.jpg
פירמידת סרפינסקי היא אנלוג ממד גבוה של משולש סרפינסקי

פירמידת סרפינסקי היא פרקטל שנוצר על ידי הבניה הבאה: מכווצים פירמידה לחצי מגבוהה המקורי, ושמים חמש עותקים של פירמידה זו כך שקצותיהם נוגעות ואז חוזרים על התהליך. תכונה של פירמידת סרפינסקי היא ששטח הפנים שלה אינסופי ואילו נפחה אפס.


אווריסט גלואה

המתמטיקאי והמהפכן הצרפתי אווריסט גלואה, מיוצרי תורת החבורות ומייסדה של תורת גלואה, שני תחומים מרכזיים באלגברה מופשטת, נהרג בדו-קרב ב-30 במאי 1832, בהיותו בן 21 בלבד. בידיעה כי חייו מתקרבים לקיצם, ובניסיון לשמר את מחקריו גם לאחר מותו, העלה גלואה על הכתב בלילה שלפני הדו-קרב, את עיקרי רעיונותיו החשובים, בצורה מאוד לא מסודרת. בין השאר, שימשה תורת החבורות את מארי גל-מאן ויובל נאמן, במקביל, בחיזוי הקווארקים.


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: לא מדויק

לא מדויק הוא הבלוג של ד"ר גדי אלכסנדרוביץ', שבו עוסק המחבר בקשת רחבה של נושאים, מכל תחומי המתמטיקה ומדעי המחשב. העיסוק הוא מנקודת מבט מתקדמת, אך נעשה מאמץ להנגשתם לציבור רחב ככל האפשר של קוראים.


Kapitolinischer Pythagoras adjusted.jpg

פיתגורסיוונית: Πυθαγόρας), פילוסוף ומתמטיקאי יווני, חי כמשוער בין השנים 496-582 לפני הספירה.

מייסד האסכולה הפיתגוראית, שהייתה קהילה דתית-פילוסופית שהאמינה שאפשר לתאר את כל העולם ביחסים מתמטיים בין מספרים טבעיים, ודגלה באורח-חיים של פשטות המוקדש לעיון והתבוננות, ובצמחונות. בני אסכולה זו נמנים עם הפילוסופים הקדם-אליאטים.

פיתגורס גילה שקיים יחס מספרי בין אורכי המיתרים ובין הצלילים המפיקים מהם, ושניתן לתרגם את תנועת הכוכבים לנוסחה מתמטית. מכאן הסיק שניתן לתרגם כל דבר למספרים ושכל דבר הוא התגלמות של מספר או נוסחה מספרית. פיתגורס ייחס חשיבות רבה ללימודי הגאומטריה, אך המסורת היוונית ייחסה את ראשיתה דווקא לתאלס. רק במסורת הרומית, המאוחרת יותר, זכה פיתגורס למעמד של ממציא המתמטיקה ומחבר לוח הכפל. כיום זכור בעיקר על-פי משפט פיתגורס, הנקרא על שמו.


Article MediumPurple.svg


Cquote2.svg

אריתמטיקה היא להיות מסוגל לספור עד 20 מבלי לחלוץ נעליים.

Cquote3.svg
מיקי מאוס


בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Hoffman - erdesh.jpg

פול הופמן, האיש שאהב רק מספרים - סיפורו של פאול ארדש וחיפושו אחר האמת המתימטית, תרגום: דרורה בלישה, הוצאת מטר, 2001.

הספר הוא ביוגרפיה של פאול ארדש, מתמטיקאי יהודי יליד הונגריה, שחי בארצות הברית, ובמדינות נוספות ובהן ישראל. ארדש עסק בעיקר בתורת המספרים ובמתמטיקה בדידה, ופרסם מעל ל-1,500 מאמרים בתחומים אלה, רובם הגדול עם מחברים-עמיתים.

מחבר הספר, פול הופמן, עוסק בפופולריזציה של המדע, כמנחה טלוויזיה, ככותב של ספרי מדע פופולרי וכעורך של כתב העת "דיסקבר".

נדרש להגיע למספר 2000, באמצעות המספרים 1 עד 5 בלבד, כאשר מותר להשתמש בכל מספר פעם אחת. הפעולות המותרות הן כפל, חיסור והעלאה בחזקה.


לחידות נוספות, לחידות קשות יותר


משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

השערת קולץ היא בעיה בתורת המספרים, הקשורה בהתייצבות של התהליך המספרי הבא:

מגדירים כלל, באופן הבא: מספרים זוגיים יש לחלק בשתיים, בעוד שמספרים אי-זוגיים יש להכפיל בשלוש ולהוסיף לתוצאה אחת. ההשערה היא שהפעלה חוזרת של כלל זה תביא בסופו של דבר למספר 1, ואין זה משנה מהי נקודת ההתחלה. לדוגמה, הפעלת התהליך על המספר 11 מביאה ל-34, משם ל-17, ואחר-כך, לפי הסדר, \ 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow  20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1. בדוגמה זו, כמו במקרים רבים אחרים, מתקבלים מספרים גדולים יחסית, אך בסופו של דבר הירידות מתגברות על העליות, והתוצאה מגיעה ל-1.

השערה זו זכתה לפופולריות רבה, בעיקר משום שקל מאוד לתכנת ולבדוק אותה בעזרת מחשב. ההשערה נבדקה עבור מספרים עד ל-27 מיליון מיליארדים, אבל לא ידועה לה עדיין כל הוכחה. פול ארדש אמר על השערה זו כי "המתמטיקה עדיין לא מוכנה לבעיות כאלה", ואף הציע, כדרכו, פרס כספי בן 500 דולר למי שימצא לה הוכחה.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


תורת הכאוס הוא ענף במתמטיקה ובפיזיקה המתאר התנהגות של מערכות דינמיות שמגלות רגישות גבוהה לשינויים קטנים בתנאי התחלה. המושג כאוס במתמטיקה נטבע על ידי המתמטיקאי ג'יימס א. יורק. בניגוד למה שהשם מרמז, התנהגות כאוטית אינה התנהגות בה יש אי סדר מוחלט. התנהגות כאוטית היא חסומה, כלומר מוגבלת לאירועים מסוימים, והמערכת שואפת למושך - אוסף יציב של מצבים.

החידוש הגדול בתורת הכאוס היה שהיא הראתה שגם במערכות פשוטות ודטרמיניסטיות יש מצבים בהן התנהגותן לא ניתנת לחיזוי באופן אפקטיבי, כי לשם כך יש צורך בידיעת התנאים ההתחלתיים בדיוק אינסופי. תופעה זו מכונה בלשון ציורית "אפקט הפרפר". דוגמאות למערכות כאלה הן האטמוספירה ומערכות כלכליות מסוימות.

זמינותם של מחשבים זולים וחזקים יותר מאפשרת יישום רחב יותר של תאוריית הכאוס וכיום תורת הכאוס היא תחום מחקר פעיל ביותר.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים


משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים


P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים