פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא


פלימפטון 322

פלימפטון 322 הוא שמו של לוח חרסית שמקורו בבבל והוא מתוארך בין השנים 1900 לפנה"ס עד 1600 לפנה"ס. הלוח, הכתוב בכתב יתדות, מכיל ארבע עמודות וחמש עשרה שורות של מספרים בספרות בבליות, כך שהמספרים בשתיים מן העמודות שייכים לשלשות פיתגוריות. מהות המספרים שבו שנויה במחלוקת - על פי חלק מהפרשנויות, הלוח שימש לייצור שלשות פיתגוריות או לחישוב ערכה של פונקציה טריגונומטרית ובכך הוא מעיד על רמה מתמטית גבוהה של התרבות הבבלית.

הלוח התגלה בעת חפירות ארכאולוגיות לא חוקיות, יחד עם עוד אלפי לוחות מסוגו, בשנות העשרים של המאה ה-20. ג.א. פלימפטון קנה את הלוח, ככל הנראה מבלי שהוא או המוכר יבחינו בייחוד שבו, ובשנות ה-30 תרם אותו יחד עם האוסף שלו לאוניברסיטת קולומביה, שם הוא שמור עד עצם היום הזה.


LogisticMap BifurcationDiagram.png
דיאגרמת הביפורקציה של ההעתקה x \mapsto rx(1-x)

הדיאגרמה מציגה עבור כל ערך של r את המסלולים המחזוריים היציבים (או באופן כללי יותר אטרקטורים) של המערכת הדינמית המוגדרת על ידי ההעתקה על הישר הממשי. מחקר של המערכת הדינמית המוגדרת על ידי העתקה זאת על המישור המרוכב הוא הבסיס להגדרתן של קבוצת מנדלברוט וקבוצת ג'וליה


Rtriangle-mathsinegypt.svg

שלשת המספרים \left\{3,4,5  \right\} היא לא רק השלשה הפיתגורית שאיבריה הקטנים ביותר במספרים טבעיים, כי אם גם היחידה שאיבריה עוקבים. במספרים שלמים, השלשה הנוספת שאיבריה עוקבים הנה \left\{(-1),0,1\right\}. ניתן לוודא טענה זו על ידי פתירת המשוואה \ x^2+(x+1)^2=(x+2)^2.


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: The Geometry Junkyard (באנגלית)

אתר מקסים המרכז הפניות לנושאים הקשורים לשעשועי מתמטיקה גאומטריים ברשת.


Frans Hals - Portret van René Descartes.jpg

רנה דקארטצרפתית: René Descartes), מוכר גם בצורה הלטינית של שמו רנאטוס קרטזיוס (Renatus Cartesius)‏ (31 במרץ 1596 - 11 בפברואר 1650) הוא פילוסוף ומתמטיקאי צרפתי. נחשב לאבי הפילוסופיה והמתמטיקה המודרנית, ולאחד ההוגים החשובים והמשפיעים בהיסטוריה המערבית.

הוא השפיע הן על פילוסופים בני זמנו והן על אלו שבאו אחריהם, ונודע בגישתו הרציונלית המעמידה את התבונה ותכונות המציאות הא-פריוריות (כלומר, הקודמות להתנסות) במרכז חקירותיו. דקארט התעסק בעיקר בידיעה ודאית וביחס בין גוף לנפש. למרות שהיה מוכר בעיקר עקב הגותו פורצת הגבולות בפילוסופיה, הוא השיג פרסום רחב גם כממציא של מערכת הצירים הקרטזית ("קרטזית" מלשון "קרטזיוס", משמע, דקארט). מערכת זו הייתה בעלת השפעה רבה על התפתחות המתמטיקה המודרנית.


Article MediumPurple.svg


מדע זה מה שאנחנו מבינים מספיק טוב כדי להסביר למחשב. אומנות היא כל דבר אחר שאנחנו עושים


בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Aha gotcha.jpg

Martin Gardner, aha! Gotcha, W. H. Freeman and Company, 1982

ספר זה, אחד מרבים שכתב מרטין גרדנר, מביא שלל רעיונות מתחומי מתמטיקה אחדים, כפי שמלמדים שמות פרקיו: לוגיקה, מספר, גאומטריה, הסתברות, סטטיסטיקה וזמן. לכל רעיון מוקדשים עמוד או שניים בספר, ובהם תיאור הרעיון וניתוחו בשפה שווה לכל נפש, המלווה ברצועת קומיקס להצגת הרעיון. בין הרעיונות שבספר: פרדוקס השקרן, פרדוקס הספר, המלון של הילברט, פרדוקס ההצבעה, פרדוקס העורב, הפרדוקסים של זנון ורבים אחרים.

Parsa.PNG

חידת חיתוך: כיצד ניתן לחלק את הפרסה לשישה חלקים, באמצעות שני קוים ישרים בלבד?


לחידות נוספות, לחידות קשות יותר


משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

בתמונה זו m=9 ולכן כאשר נתונות עשר יונים, על שתיים מהן לחלוק תא אחד.

עקרון שובך היונים, או בשמו השני: "עקרון דיריכלה", הוא עיקרון מתמטי הקובע כי אם יש m תאים בשובך שלתוכם יש להכניס m+1 יונים, קיים בהכרח תא אחד שבו תימצאנה לפחות שתי יונים. לעיקרון טריוויאלי זה יש שימושים רבים בהוכחות בתחום הקומבינטוריקה, וניתן להוכיח באמצעותו תוצאות רבות, מעניינות ובלתי טריוויאליות כלל.

בניסוחו הפורמלי בתורת הקבוצות, המשפט קובע שאם עוצמת הקבוצה A גדולה ממש מעוצמת הקבוצה B, אזי לא קיימת פונקציה חד חד ערכית מ-A ל-B.

(ראו גם: חידה שבפתרונה נעשה שימוש בעקרון שובך היונים.)

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


קומבינטוריקה היא ענף במתמטיקה בדידה, העוסק בספירתם של עצמים בקבוצות סופיות המקיימות קריטריון מסוים, בהחלטה האם קיימים עצמים "אופטימליים" בקבוצות כאלה ובמציאת מבנה אלגברי משותף לעצמים אלו.

לקומבינטוריקה שימושים רבים בתחומי המתמטיקה השונים, כמו: אלגברה והסתברות. כמו כן, נעשה שימוש נרחב בכלים קומבינטורים במדעי המחשב ובסטטיסטיקה.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים


משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים


P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים