פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא


איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור

קבוצת קנטור היא קבוצה שנבנית בצורה האיטרטיבית הבאה: לוקחים קטע ישר, ומסירים ממנו את השליש האמצעי. מבצעים פעולה דומה בכל אחד משני הקטעים שנותרו, ונשארים עם ארבעה קטעים, שגם עליהם ממשיכים את התהליך, וכך הלאה עד אינסוף.

קבוצה זו תוארה בידי המתמטיקאי גאורג קנטור בשנת 1883. חשיבותה הרבה היא בתכונותיה המיוחדות, שסותרות את האינטואיציה ומציגות מעט ממורכבותו ומייחודו של האינסוף. תכונות אלה דחפו את קנטור לפתח את תורת הקבוצות. קרוב למאה שנים מאוחר יותר נמנתה קבוצת קנטור עם הקבוצות שעליהן ביסס בנואה מנדלברוט את רעיון הפרקטל.


Mug and Torus morph.gif
דוגמה פופולרית בטופולוגיה: דפורמציה רציפה (הומוטופיה) בין ספל קפה וכעך שמדגימה כי שני הגופים הומיאומורפים, לשניהם טופולוגיה של טורוס. למעשה כדי ששני גופים יהיו הומיאומורפים אין צורך בדפורמציה רציפה, מספיק מיפוי והיפוך רציפים. המעבר בין הכעך לספל אינו אלא ארגון מחדש של הירעה מסביב לחור שבכעך בעזרת כיווץ ומתיחה מבלי לקרוע אותה או לחבר חלקים שלא היו מחוברים קודם.


פאול ארדש, 1992

המתמטיקאי היהודי-הונגרי פאול ארדש, שעסק בין השאר בתורת הגרפים, ידוע במאמרים המדעיים הרבים שחיבר – רק לאונרד אוילר חיבר יותר מאמרים מדעיים ממנו. עובדה זו הקנתה לו מקום בפולקלור המתמטי כבסיס למניית מאמרים בשיטה רשתית הדומה לתחום עיסוקו. מדענים שחיברו מאמרים עם ארדש נחשבים בעלי "מספר ארדש 1", ולאחר מותו נספרו 511 כאלה. מי שחיבר מאמר יחד עם אדם בעל "מספר ארדש 1" נחשב כבעל "מספר ארדש 2", ואלה כבר מונים 8,163 ב-2008, וכן הלאה. מספר ארדש הממוצע בקרב אלו שיש להם מספר ארדש עומד על 4.65 ו"מספר ארדש החציוני" עומד על 5.


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: The Geometry Junkyard (באנגלית)

אתר מקסים המרכז הפניות לנושאים הקשורים לשעשועי מתמטיקה גאומטריים ברשת.


קורט גדל

קורט גדלגרמנית: Kurt Gödel)‏ (28 באפריל 1906 - 14 בינואר 1978) היה לוגיקן אוסטרי (ואחר-כך אמריקני) מגדולי הלוגיקנים של כל הזמנים.

גדל נולד ב-28 באפריל 1906 בעיר ברנו שבאימפריה האוסטרו-הונגרית (כיום בצ'כיה), לאב שהיה מנהל מפעל טקסטיל. בגיל 18 התחיל גדל את לימודיו באוניברסיטת וינה, שם לקח קורסים בפיזיקה, במתמטיקה ובפילוסופיה, כשבסופו של דבר התמקד בלוגיקה מתמטית והיה חבר בחוג הווינאי. בשנת 1930 סיים את עבודת הדוקטורט שלו, שבה הוכיח את שלמותו של תחשיב פסוקים מסדר ראשון. טענה זו ידועה בשם משפט השלמות של גדל.

מראשית ימי המתמטיקה ועד למאה העשרים פעלו המתמטיקאים מתוך תחושה שכל טענה מתמטית ניתנת להוכחה או, לחלופין, להפרכה (כלומר להוכיח שאינה נכונה). בשנת 1931 הוכיח גדל, במאמרו "על טענות שאינן ניתנות להוכחה בפרינציפיה מתמטיקה ובמערכות דומות", שלתחושה זו אין כל בסיס, וברבות מהמערכות האקסיומטיות, ובפרט אלו שמנסות למדל את האריתמטיקה, קיימות טענות שלא ניתן להוכיח או להפריך. הוכחה זו זכתה לשם משפטי האי שלמות של גדל, משפט שהוא אבן הפינה של הלוגיקה המתמטית המודרנית וזיכה את גדל בכינוי "מקלקל האריתמטיקה".


Article MediumPurple.svg


מי שאיננו יודע לספור אחת, שתיים, שלוש, או שאיננו יודע להבחין בין מספרים זוגיים ופרטיים – אין רוח אלוהים נחה עליו. לדעתי חייב כל בן חורין ללמוד אריתמטיקה באותה מידה שלומד כל ילד מצרי בשעת השיעור לאלף בית.


בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Aha gotcha.jpg

Martin Gardner, aha! Gotcha, W. H. Freeman and Company, 1982

ספר זה, אחד מרבים שכתב מרטין גרדנר, מביא שלל רעיונות מתחומי מתמטיקה אחדים, כפי שמלמדים שמות פרקיו: לוגיקה, מספר, גאומטריה, הסתברות, סטטיסטיקה וזמן. לכל רעיון מוקדשים עמוד או שניים בספר, ובהם תיאור הרעיון וניתוחו בשפה שווה לכל נפש, המלווה ברצועת קומיקס להצגת הרעיון. בין הרעיונות שבספר: פרדוקס השקרן, פרדוקס הספר, המלון של הילברט, פרדוקס ההצבעה, פרדוקס העורב, הפרדוקסים של זנון ורבים אחרים.

כיצד ניתן להגיע ל-26 באמצעות המספרים 1 5 5 5 וארבע פעולות החשבון (חיבור חיסור כפל חילוק)?


לחידות נוספות, לחידות קשות יותר


משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

משפט בולצאנו-ויירשטראס באנליזה מתמטית קובע כי לכל סדרה אינסופית חסומה של נקודות ב-\mathbb{R}^n קיימת תת-סדרה מתכנסת. ניסוח אחר (ושקול) של המשפט קובע כי לכל קבוצה אינסופית חסומה של נקודות ב-\mathbb{R}^n קיימת נקודת הצטברות.

הרעיון האינטואיטיבי שעומד מאחורי המשפט הוא שאם קיימת קבוצה שיש בה אינסוף נקודות, והאיברים שלה לא יכולים "לברוח" רחוק מדי, לפחות חלק מהם אמורים להיות קרובים מאוד זה לזה. המשפט מראה בצורה קונסרקטיבית כיצד ניתן למצוא את הסדרה או נקודת ההצטברות המבוקשות, אך זו אינה דרך מעשית, מאחר שהיא מבוססת על תהליך אינסופי של חלוקת הקטע החסום לחלקים קטנים והולכים.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


תורת המשחקים היא ענף של המתמטיקה והכלכלה המנתח מצבי עימות או שיתוף פעולה בין מקבלי החלטות בעלי רצונות שונים, כדוגמת המצבים המתעוררים במשחקי לוח שונים, בהם כל אחד מהשחקנים רוצה לנצח, ובפעילות כלכלית, בה כל אחד מהעוסקים שואף להגיע לרווח מקסימלי. מצבים כאלו מכונים משחקים, והמשתתפים בהם – שחקנים. חקירה של משחק מורכב מתאפשרת על ידי הפשטתו לאחד מכמה מודלים כלליים, הניתנים לניתוח מתמטי. המטרה היא "לפתור" את המשחק, כלומר, לזהות בו את דרכי הפעולה הצפויות של השחקנים או להצביע על דרכי פעולה מומלצות לשחקנים בודדים או לקבוצות של שחקנים. לניבוי נכון של התנהגות השחקנים עשויה להיות חשיבות מעשית רבה. בחירה נבונה של כללי הצבעה, למשל, צריכה להביא בחשבון את האפשרות של הצבעה טקטית (אסטרטגית), ותכנון של תשתית הכבישים צריך להביא בחשבון את בחירות המסלול של הנהגים בשעות העומס.

שיטות ומושגים מתורת המשחקים תופסים מקום של כבוד בענפי הכלכלה השונים ובמנהל עסקים ומשמשים גם במדעי חברה אחרים, כמו מדע המדינה ופסיכולוגיה, וכן במשפטים. תורת המשחקים משמשת גם בענפי ביולוגיה שונים, בעיקר בחקר התנהגות ואסטרטגיות אבולוציוניות של יצורים חיים. בשנים האחרונות גובר העניין בתורת המשחקים במדעי המחשב. התפתחות זו קשורה לחשיבותם הגוברת של רשתות מחשבים, ובמיוחד רשת האינטרנט. בציבור הכללי, המודעות הגדלה לתורת המשחקים מתבטאת בחדירה של מושגים הלקוחים מתחום זה, כמו משחק סכום אפס, לשפה המדוברת. תרמו לכך כמה ספרים פופולריים שנכתבו בזמן האחרון, ובמיוחד נפלאות התבונה, ביוגרפיה של המתמטיקאי ג'ון נאש, מחלוצי תורת המשחקים, שעובדה בשנת 2001 לסרט קולנוע מצליח.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים


משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים


P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים