פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.



איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור

קבוצת קנטור היא קבוצה שנבנית בצורה האיטרטיבית הבאה: לוקחים קטע ישר, ומסירים ממנו את השליש האמצעי. מבצעים פעולה דומה בכל אחד משני הקטעים שנותרו, ונשארים עם ארבעה קטעים, שגם עליהם ממשיכים את התהליך, וכך הלאה עד אינסוף.

קבוצה זו תוארה בידי המתמטיקאי גאורג קנטור בשנת 1883. חשיבותה הרבה היא בתכונותיה המיוחדות, שסותרות את האינטואיציה ומציגות מעט ממורכבותו ומייחודו של האינסוף. תכונות אלה דחפו את קנטור לפתח את תורת הקבוצות. קרוב למאה שנים מאוחר יותר נמנתה קבוצת קנטור עם הקבוצות שעליהן ביסס בנואה מנדלברוט את רעיון הפרקטל.


Kapitolinischer Pythagoras adjusted.jpg

פיתגורסיוונית: Πυθαγόρας), פילוסוף ומתמטיקאי יווני, חי כמשוער בין השנים 496-582 לפני הספירה.

מייסד האסכולה הפיתגוראית, שהייתה קהילה דתית-פילוסופית שהאמינה שאפשר לתאר את כל העולם ביחסים מתמטיים בין מספרים טבעיים, ודגלה באורח-חיים של פשטות המוקדש לעיון והתבוננות, ובצמחונות. בני אסכולה זו נמנים עם הפילוסופים הקדם-אליאטים.

פיתגורס גילה שקיים יחס מספרי בין אורכי המיתרים ובין הצלילים המפיקים מהם, ושניתן לתרגם את תנועת הכוכבים לנוסחה מתמטית. מכאן הסיק שניתן לתרגם כל דבר למספרים ושכל דבר הוא התגלמות של מספר או נוסחה מספרית. פיתגורס ייחס חשיבות רבה ללימודי הגאומטריה, אך המסורת היוונית ייחסה את ראשיתה דווקא לתאלס. רק במסורת הרומית, המאוחרת יותר, זכה פיתגורס למעמד של ממציא המתמטיקה ומחבר לוח הכפל. כיום זכור בעיקר על-פי משפט פיתגורס, הנקרא על שמו.


Vector field.svg

תיאור גרפי של השדה הווקטורי .

Pythagoras-2a.gif

משפט פיתגורס, הוא אחד מהמשפטים הגאומטריים הנודעים ביותר. הוא קובע שסכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר-זווית, שווה לשטח הריבוע הבנוי על היתר. באנימציה רואים את אחת מההוכחות הרבות למשפט. בעזרת חיתוך ל-4 משולשים ישרי זווית וסידור החלקים מחדש מתקבלת הוכחה של המשפט.


המחשה לבעיית מונטי הול

פרדוקס מונטי הול: כדי לזכות במכונית, עליך לנחש מאחורי איזו דלת, מבין שלוש דלתות, היא הוחבאה. אתה מנחש, אך במקום לפתוח בפניך את הדלת בה בחרת, פותחים בפניך את אחת האחרות. מתברר, שמאחורי הדלת שפתחו, המכונית לא מוחבאת. כעת עליך להחליט אם לדבוק בניחוש הקודם שלך, או לנחש שהמכונית מוחבאת מאחורי הדלת האחרת, מבין השתיים בהן לא בחרת – מאחורי זו מהן, שנשארה סגורה. מה עליך לעשות? אם אינך מחליף את הדלת בה בחרת, האם למעשה סיכויי הזכייה שלך נותרים כשהיו – שליש? ואם כך, האם סיכוייך לזכות במקרה שכן תחליף את בחירתך, הם אחת פחות שליש, דהיינו שני שלישים? ואולי, בין אם תחליף את הדלת בה בחרת ובין אם לא, למעשה אתה בוחר מחדש בין שתי דלתות, וסיכויי הצלחתך הם חצי?


ישנם שלושה סוגי שקרים: שקרים, שקרים ארורים וסטטיסטיקה


נוסחה לריבוע הסכום. אחת הנוסחאות הראשונות שלומדים באלגברה בית סיפרית. הנוסחה שימושית לביצוע מניפולציות אלגבריות פשוטות, והיא עומדת בבסיס של אחת השיטות לפתרון משוואה ריבועית - השלמה לריבוע


כדי להמחיש את הקושי שבניהול סחר חליפין בעולם נטול כסף כותב יובל נח הררי, בספרו "קיצור תולדות האנושות" (עמ' 180): "אם בשוק נסחרים 100 מוצרים שונים, הקונים והמוכרים צריכים להכיר 4,950 ערכי חליפין שונים". כיצד חושבה תוצאה זו?


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: לא מדויק

לא מדויק הוא הבלוג של ד"ר גדי אלכסנדרוביץ', שבו עוסק המחבר בקשת רחבה של נושאים, מכל תחומי המתמטיקה ומדעי המחשב. העיסוק הוא מנקודת מבט מתקדמת, אך נעשה מאמץ להנגשתם לציבור רחב ככל האפשר של קוראים.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Unguru.jpg

שבתאי אונגרו, ‏מבוא לתולדות המתמטיקה, סדרת אוניברסיטה משודרת, בהוצאת משרד הביטחון – ההוצאה לאור, 1989

כשאר הספרים בסדרת אוניברסיטה משודרת, גם ספר זה מבוסס על הרצאות שנתן מחברו בגלי צה"ל. הספר, בשני חלקים, עוסק במתמטיקה ביוון העתיקה, במתמטיקה של המאות ה-16 וה-17, ובמתמטיקה של המאות ה-19 וה-20. בפתח דבר לספר תיאר המחבר, שבתאי אונגרו, פרופסור במכון להיסטוריה ופילוסופיה של המדעים והרעיונות באוניברסיטת תל אביב, את גישתו:

"התפיסה השלטת בהרצאות היא התפיסה ההיסטורית הרואה במתמטיקה יצירה אנושית במלוא מובנה של המלה, המושפעת מאופי יוצריה ומאיכותם, מן הבעייתיות הפנימית של המקצוע ומן המסגרות החיצוניות השונות שהיצירה המתמטית מתנהלת בהן."


משפטים מפורסמים
השערות מפורסמות

המשפט האחרון של פרמה הוא משפט מפורסם בתורת המספרים שאותו ניסח המתמטיקאי פייר דה פרמה באמצע המאה ה-17, והוא נותר כבעיה פתוחה עד שהוכח על ידי אנדרו ויילס בשנת 1995. במשך כ-350 שנים היה לאחת הטענות המפורסמות ביותר בעולם המתמטיקה שלא הוכחו.

המשפט טוען כי:

עבור n טבעי גדול מ-2, לא קיימים מספרים טבעיים x,y,z המקיימים את המשוואה: .

מבט על משפטים והשערות נוספים


נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


תורת ההחלטות היא תחום במתמטיקה המסייע בקבלת ההחלטה הטובה ביותר לאור מידע נתון. כמעט בכל המקרים ניצבות בפני המחליט שתי בעיות:

  • אין דרך פשוטה לכמת באופן מתמטי ידע או השלכות של אירוע.
  • המידע הקיים אינו שלם ולכן יש להעריך (לרוב באופן הסתברותי) את המידע החסר.

בקבלת החלטות עוסקים באפשרויות לקבל החלטה (Actions או Alternatives) כאשר לכל החלטה יש משמעויות (Consequences).

תחום זה, כמו חקר ביצועים ותורת המשחקים, פותח בזמן מלחמת העולם השנייה (למרות שעסקו בו גם לפני כן) ובמשך המלחמה הקרה. כיום משמשים מודלים בקבלת החלטות לקבלת החלטות בתחומים רבים כמו רפואה, כלכלה ומדעי המחשב בניסיון לפתח מערכות שיסייעו בקבלת החלטות.



ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה