לדלג לתוכן

פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור
איור המציג את שבעת השלבים הראשונים בבניית קבוצת קנטור

קבוצת קנטור היא קבוצה שנבנית בצורה האיטרטיבית הבאה: לוקחים קטע, ומסירים ממנו את השליש האמצעי. מבצעים פעולה דומה בכל אחד משני הקטעים שנותרו, ונשארים עם ארבעה קטעים, שגם עליהם ממשיכים את התהליך, וכך הלאה עד אינסוף.

קבוצה זו תוארה בידי המתמטיקאי גאורג קנטור בשנת 1883. חשיבותה הרבה היא בתכונותיה המיוחדות, שסותרות את האינטואיציה ומציגות מעט ממורכבותו ומייחודו של האינסוף. תכונות אלה דחפו את קנטור לפתח את תורת הקבוצות. קרוב למאה שנים מאוחר יותר נמנתה קבוצת קנטור עם הקבוצות שעליהן ביסס בנואה מנדלברוט את רעיון הפרקטל.

אוגוסטין לואי קושי
אוגוסטין לואי קושי

אוגוסטן לואי קוֹשי (Augustin Louis Cauchy בצרפתית) (21 באוגוסט 178923 במאי 1857) הוא מתמטיקאי צרפתי, שידוע בעיקר בזכות תרומתו הרבה לאנליזה המודרנית והביסוס הלוגי והפורמלי של החשבון האינפיניטסימלי. קושי היה מתמטיקאי עמוק ויסודי, שנקט בשיטות עבודה והוכחה מדוקדקות וקפדניות (ריגורוזיות). התרבות המתמטית של קושי השפיעה רבות על תלמידיו ועל ממשיכיו ומהווה יסוד חשוב בתרבות המתמטית של ימינו.

מלבד הנחלת תרבות ההוכחה הריגורוזית תרם קושי רבות בתחומים רבים של המתמטיקה והפיזיקה המתמטית.

דיסק עזר למציאת ערכי פונקציות טריגונומטריות המתוארך לתקופת המאה ה-16.

טורוס הנו גוף סיבוב הנוצר מסיבובו של מעגל סביב לציר הניצב לו אך לא חותך אותו. בתמונה מופיע טורוס עם חור ההולך וגדל עד שהטורוס "בולע" את עצמו.
הקוף מקליד באקראי
הקוף מקליד באקראי

משפט הקוף המקליד גורס כי ברצף ארוך מספיק של אותיות אקראיות, יופיע בסופו של דבר, כמעט בוודאות, כל טקסט אפשרי. באופן ציורי ניתן לתאר את המשפט בעזרת קוף שמקליד תווים במכונת כתיבה באופן אקראי, ואחרי זמן רב מאוד מתקבל רצף האותיות של אחת מיצירות שייקספיר. המשפט זכה לאזכורים רבים בתרבות, החל מבדיחות ברומן "מדריך הטרמפיסט לגלקסיה" ובסדרת הטלוויזיה "משפחת סימפסון", ועד לגרסאות למשפט בספרים "הסיפור שאינו נגמר" ו"השען העיוור".


כל תופעות הטבע הן תוצאות מתמטיות של מספר מועט של חוקים נצחיים


משפט פיתגורס. אחד המשפטים המנוסחים הראשונים בהיסטוריה של המתמטיקה.


בצלחת פטרי "מניחים" חיידק אשר מכפיל את עצמו פעם בארבע דקות. כל אחד מתוצריי ההכפלה מכפיל את עצמו גם הוא פעם בארבע דקות. כעבור שעה מתמלאת צלחת הפטרי עד אפס מקום בתוצרי ההכפלה. כעת, בצלחת פטרי אחרת מניחים שני חיידקים מאותו הסוג המתרבה פעם בארבע דקות. כמה זמן ייקח לצלחת הפטרי בעלת שני החיידקים להתמלא עד אפס מקום?


בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: The MacTutor History of Mathematics archive (באנגלית)

MacTutor הוא האתר האולטימטיבי למתעניינים בהיסטוריה של המתמטיקה. האתר מכיל מאות ביוגרפיות של מתמטיקאים, עשרות רבות של ערכים על נושאים בהיסטוריה של המתמטיקה, ערכים על עקומות מפרסמות, אגודות, פרסים ועוד. את האתר הקימו שני סקוטים נדיבים, פרופסורים למתמטיקה באוניברסיטת סנט אנדרוז, ג'ון אוקונור ואדמונד רוברטסון.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Martin Gardner, aha! Gotcha, W. H. Freeman and Company, 1982

ספר זה, אחד מרבים שכתב מרטין גרדנר, מביא שלל רעיונות מתחומי מתמטיקה אחדים, כפי שמלמדים שמות פרקיו: לוגיקה, מספר, גאומטריה, הסתברות, סטטיסטיקה וזמן. לכל רעיון מוקדשים עמוד או שניים בספר, ובהם תיאור הרעיון וניתוחו בשפה שווה לכל נפש, המלווה ברצועת קומיקס להצגת הרעיון. בין הרעיונות שבספר: פרדוקס השקרן, פרדוקס הספר, המלון של הילברט, פרדוקס ההצבעה, פרדוקס העורב, הפרדוקסים של זנון ורבים אחרים.

משפטים מפורסמים
השערות מפורסמות

המשפט האחרון של פרמה הוא משפט מפורסם בתורת המספרים שאותו ניסח המתמטיקאי פייר דה פרמה באמצע המאה ה-17, והוא נותר כבעיה פתוחה עד שהוכח על ידי אנדרו ויילס בשנת 1995. במשך כ-350 שנים היה לאחת הטענות המפורסמות ביותר בעולם המתמטיקה שלא הוכחו.

המשפט טוען כי:

עבור n טבעי גדול מ-2, לא קיימים מספרים טבעיים x,y,z המקיימים את המשוואה: .
מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


אלגברה בסיסית הוא שמו המודרני של הענף המתמטי מתחום האלגברה העוסק בביטויים מתמטיים שבהם מיוצגות כמויות שערכן המספרי אינו ידוע באמצעות סמלים, ובביצוע מניפולציות אלגבריות של ביטויים כאלה. הביטויים האמורים מורכבים בעזרת ארבע פעולות החשבון, ופעולות כמו חזקה, שורש ולוגריתם, מסמלי היסוד, שהם "משתנים" ו"פרמטרים". תכליתן של המניפולציות האלגבריות עשויה להיות העברת ביטוי לצורה פשוטה יותר, או פתרון משוואות העשויות לייצג בעיות תאורטיות או מעשיות.

לאלגברה הבסיסית שימוש רב במתמטיקה ובכל יתר המדעים המדויקים. באמצעות הכלים שמספקת האלגברה הבסיסית, מתוארות מערכות מתמטיות וטבעיות רבות על ידי משתנים ופרמטרים המרכיבים משוואות המתארות את הקשרים הכמותיים המאפיינים את המערכות.

ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה