פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


Arithmetic symbols2.svg

ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה.

ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות. במקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין.

באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים.


End of universe.jpg

משולש, כפי שהוא נראה במערכות גאומטריות שונות. המשולש התחתון הנו משולש המתקיים בגאומטריה האוקלידית. המשלוש האמצעי מתקיים בגאומטריה היפרבולית והעליון בגאומטריה ספירית.


קוביה (הקסהדרון)

הבעיות הגאומטריות של ימי קדם, שנוסחו על ידי היוונים הקדמונים, הן בעיות בנייה שיש לפתור באמצעות שימוש בסרגל ובמחוגה בלבד. הבעיות הן: בניית קובייה שנפחה כפול מזה של קובייה נתונה, חלוקת זווית נתונה לשלושה חלקים שוים, בניית ריבוע השווה בשטחו לעיגול נתון ובניית מצולע משוכלל בן שבע צלעות. רק במאה ה-19 הוכח בעזרת התורה המתמטית של הרחבת שדות שהבעיות אינן פתירות, אולם העיסוק בהן במשך השנים תרם רבות להתפתחות הגאומטריה.


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: קשר חם

קשר חם הוא האתר של המרכז הארצי לקידום שיפור וריענון החינוך המתמטי, והוא מכיל שפע מאמרים בכל תחומי המתמטיקה, פורומים, וכן אוסף קישורים נרחב לאתרי מתמטיקה. האתר מיועד לעוסקים בחינוך מתמטי בישראל, וגם תלמידים ימצאו בו עניין רב.

האתר פועל היטב באינטרנט אקספלורר, אך אינו מתפקד כראוי בפיירפוקס.


ריכרד דדקינד, תצלום משנת 1850 לערך

יוליוס וילהלם ריכרד דֶדֶקינד (6 באוקטובר 1831 - 12 בפברואר 1916) היה מתמטיקאי גרמני, מממשיכיו הבולטים של ארנסט קומר.

דדקינד נולד בבראונשווייג, והיה הצעיר מבין ארבעת ילדיו של יוליוס לוין אולריך דדקינד. דדקינד מעולם לא השתמש בשני שמותיו הראשונים, וחי עם אחותו הרווקה יוליה עד מותה ב-1914. הוא לא נישא מעולם.

בשנת 1848 החל דדקינד בלימודיו בקולג' המלכותי בבראונשווייג. בשנת 1850, מצויד בבסיס מתמטי חזק, החל ללמוד באוניברסיטת גטינגן. באוניברסיטה זו לימד גאוס, וממנו למד דדקינד על תורת המספרים. בין מוריו החשובים של דדקינד היה גם מוריץ אברהם שטרן שכתב באותו זמן עבודות רבות בתורת המספרים. דדקינד הגיש עבודת דוקטורט קצרה בהנחייתו של גאוס שנקראה "Über die Theorie der Eulerschen Integrale" ("על התאוריה של שלמים אוילריאניים"), אך בעבודה זו לא ניכר הכישרון שייחד את דדקינד בעבודותיו המאוחרות. למרות זאת הכיר גאוס בכישוריו - דדקינד קיבל את הדוקטורט שלו ב-1852 והיה לתלמידו האחרון של גאוס.

Fantastic Fiction - Search



מתמטיקאי, בדומה לצייר או משורר, יוצר תבניות. אם תבניותיו יותר עמידות משל האמנים, זאת משום שהן בנויות מרעיונות. צייר מקיים תבניות בצבעים, משורר - במילים.


בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Journey he.jpg

צילה שפיצר-שמיר, מסע בעולמות מופשטים, הוצאת מאגנס, תשנ"ז

הספר מציג לקורא בצורה ידידותית רעיונות אחדים מתחום המתמטיקה, ובהם חשבון מודולרי, וקטורים, מטריצות, העתקה ליניארית, סימטריה, ריצוף של המישור ועוד. בהקדמה לספר כותבת המחברת:

אנשים רבים מרגישים, שמתמטיקה היא עונש. לומדים אותה רק אם חייבים. הספר הזה איננו ספר לימוד. הוא מציג את הצדדים היפים שבמתמטיקה כדי לספק עניין והנאה. הוא מציג את הדברים בעזרת "האנשה" של יצורים מתמטיים ולא "הענשה" של הקוראים אותו.

על שולחן עגול מונחים 20 תפריטים, 10 בצרפתית ו-10 ביפנית. מסביב לשולחן יושבים 20 אנשים, 10 צרפתים ו-10 יפנים, כך שמול כל אחד מהם תפריט. השולחן ניתן לסיבוב. הוכיחו שקיים סיבוב של השולחן שבו לפחות 10 מהאנשים מקבלים תפריט בשפה שלהם.



משפטים מפורסמים
השערות מפורסמות
מבט אל הלוח – משפט או השערה מפורסמים

השאלה האם P=NP היא בעיה פתוחה מרכזית במדעי המחשב, העוסקת ביכולת לפתור אוסף גדול של בעיות בצורה יעילה. במילים פשוטות, השאלה היא האם כל בעיה שניתן לבדוק עבורה בצורה יעילה האם פתרון מוצע הוא נכון (בעיה השייכת לקבוצה NP), היא גם בעיה שניתן למצוא עבורה פתרון בצורה יעילה (בעיה השייכת לקבוצה P). לפתרון הבעיה ישנן השלכות תאורטיות ומעשיות רבות, והיא זכתה להכרה כאחת מ"שבע בעיות המילניום" של מכון קליי למתמטיקה. אף שכיום לא ידועה תשובה לשאלה זו, ההשערה הרווחת היא כי P≠NP.

השאלה האם P=NP אינה בעלת ערך אקדמי בלבד. עם התפתחות השימושים המסחריים של ההצפנה בעידן המחשב, ובמיוחד במסחר אלקטרוני, הפכה התשובה לשאלה לבעלת חשיבות כלכלית לא מבוטלת. הסיבה לכך היא שרוב המסחר האלקטרוני ותעשיית האבטחה הדיגיטלית מסתמכים על אלגוריתמים שיכולת ההצפנה שלהם נובעת מחוסר היכולת הנוכחי לפתור בעיות NP בזמן סביר.

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


טריגונומטריהיוונית trigōnon "משולש" + metron "מדידה") היא ענף במתמטיקה העוסק בקשר שבין זוויות וצלעות. את הקשרים האלו מאפיינים על ידי הפונקציות הטריגונומטריות, כאשר רוב העיסוק בתחום מתמקד באפיון תכונותיהן. הפונקציות הטריגונומטריות הבסיסיות הן הסינוס והקוסינוס. לטריגונומטריה שימושים רבים במתמטיקה, הן בממתטיקה טהורה והן במתמטיקה שימושית, ובתחומים רבים במדעי הטבע והטכנולוגיה.



P computing.svg P At sign.png P physics-2.png P chemistry.svg P Economy.png P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים