פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

משחק מגדלי האנוי עשוי עץ לבוד

מגדלי האנויאנגלית: Towers of Hanoi) הוא משחק חידה מתמטי, שמקורו בסוף המאה ה-19. המשחק הוא אמצעי הדגמה פופולרי לעקרון הרקורסיה ולמושגים בסיסיים אחרים בקומבינטוריקה ובמדעי המחשב.

המשחק כולל שלושה מוטות אנכיים ("המגדלים") ומספר דיסקיות בגדלים שונים שניתן להשחיל על המוטות. בתחילת המשחק, הדיסקיות מסודרות על פי הגודל על אחד המוטות, כשהגדולה ביותר למטה והקטנה ביותר למעלה.

מטרת המשחק היא להעביר את כל הדיסקיות למוט אחר, תחת שני החוקים הללו:

  • מותר להזיז רק דיסקית אחת בכל פעם – כלומר להוציאה מהמוט שבו היא נמצאת, ולהשחיל אותה על מוט אחר.
  • אסור לשים דיסקית על דיסקית שקטנה ממנה.

כאשר מקודדים כללים אלה בצורה גרפית, מתקבלת גרסה סופית של משולש סיירפינסקי.

Boulier1.JPG

חשבונייה סינית. עקב סיבות גאופוליטיות, במשך שנים רבות התפתחה התרבות של סין העתיקה עם זיקה מעטה מאוד לתרבויות אחרות. המתמטיקה הסינית, בשונה מהמתמטיקה היוונית, הייתה מתמטיקה תכליתית.
ראו גם: היסטוריה של האריתמטיקה.

אל תהיי מודאגת מן הקשיים שלך במתמטיקה – אני מבטיחך כי שלי גדולים יותר.

אלברט איינשטיין משיב לילדה שכתבה לו על קשייה במתמטיקה
Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: MegaMath (באנגלית)

MegaMath הוא אתר המביא לתלמידי בית הספר היסודי את הרעיונות והבעיות של המתמטיקה המודרנית: לוגיקה, האינסוף, תורת הגרפים, ועוד. זהו אתר חובה לשונאי מתמטיקה: אלה שמעולם לא הבינו דבר בתחום זה, אך פתוחים להזדמנות לגלות את יופיו. את האתר העניקה לעולם המעבדה הלאומית לוס אלמוס, המוכרת יותר בתרומתה לפיתוח נשק גרעיני.

Leonardo da Pisa.jpg

לאונרדו מפיזה או לאונרדו פיזנו (= איש פיזה) (11701250 [1]), מתמטיקאי איטלקי. נודע בעיקר בכינוי פיבונאצ'י, שניתן לו לאחר מותו, שמשמעותו "בנו של בונאצ'י" (Filius Bonacci), על שם אביו שכונה בונאצ'י. התפרסם בעיקר בשל תרומתו למעבר לספירה העשרונית היה הראשון שפרסם אותה במערב אירופה, ובשל סדרת המספרים שגילה, הקרויה על שמו.

בשנת 1202 פרסם את הספר Libre Abacci (ספר החשבונייה) אשר מכיל כמעט את כל אשר היה ידוע באותה תקופה על אלגברה ואריתמטיקה. הספר – שרק המהדורה השנייה שלו משנת 1228 נשתמרה – היה הראשון במערב אירופה (למעט ספרד) שעשה שימוש בשיטת הספרות העשרונית הנהוגה עד ימינו, שמוצאה מהודו (קדם לו בכך "ספר המספר" מאת אברהם אבן עזרא, שנכתב עברית).

ב-1637, על שולי עותק של הספר "אריתמטיקה" מאת דיופנטוס, כתב פייר דה פרמה את המשפט הבא: עבור n טבעי גדול מ-2, לא קיימים מספרים טבעיים x,y,z המקיימים את המשוואה: , ללא הוכחה, ובצירוף הערה: "גיליתי הוכחה נפלאה למשפט הזה שהשוליים הללו צרים מלהכיל". המשפט הפך לאחד המשפטים המפורסמים בתורת המספרים, אך לאחר ניסיונות כה רבים להוכיח או להפריך אותו, בתחילת המאה ה-20 הוא נראה אתגר קשה עד בלתי אפשרי בעיני קהילת המתמטיקאים. עניין מחודש בבעיה עורר התעשיין היהודי-גרמני פאול וולפסקהל, שהיה מתמטיקאי חובב, והקצה בצוואתו 100,000 מרקים למוכיח המשפט. עם פטירתו וגילוי דבר הצוואה (1908), הפכה הזכייה בפרס וולפשקל ליעדם של חובבים רבים, שטענו שמצאו הוכחה למשפט, אך הוכחתם הייתה שגויה. מכתבים כה רבים ושגויים נשלחו לאוניברסיטת גטינגן כדי לזכות בפרס, עד שפרופסור אדמונד לנדאו נהג לתת לסטודנטים שלו למלא מכתב סטנדרטי עם מספרי העמוד והשורה בהם נמצאה הטעות הראשונה. מרטין גרדנר מספר על שיטות יצירתיות אף יותר: שליחת המכתב בחזרה והפניה לחובבן הקודם ששלח מכתב כבר סמכא, או התשובה "יש לי הפרכה נפלאה להוכחה שלך, אבל לרוע המזל הנייר הזה צר מלהכילה".

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Singh - fermat.jpg

סיימון סינג, המשפט האחרון של פרמה: סיפור החידה המתימטית ששיגעה את המוחות המבריקים ביותר בעולם במשך 358 שנים, תרגם עודד שכטר, הוצאת ידיעות אחרונות, 2000

המשפט האחרון של פרמה הוא משפט מפורסם בתורת המספרים שנוסח על ידי המתמטיקאי פייר דה פרמה באמצע המאה ה-17 ונותר כבעיה פתוחה עד שהוכח על ידי אנדרו ויילס בשנת 1995. בעקבות ההוכחה, שעוררה עניין גם מחוץ לעולמם של המתמטיקאים, כתב סיימון סינג את ספרו, "המשפט האחרון של פרמה". אגב תיאור דרכו של ויילס אל ההוכחה המיוחלת, נוגע סינג בתולדות המתמטיקה מראשיתה ועד ימינו. סינג הקפיד שבספר עצמו לא יופיעו הוכחות, והמעטות שנכללות בו מופיעות בנספחים בסוף הספר. היה זה הספר הראשון על מתמטיקה שהגיע למקום הראשון ברשימת רבי המכר בבריטניה, והוא תורגם לשפות רבות, שאף בהן זכה להצלחה.

מולך עומדים שלושה אנשים - דובר אמת (תשובותיו הן תמיד אמת), שקרן (תשובותיו הן תמיד שקר), ועונה באקראי (לעיתים תשובתו היא אמת, ולעיתים היא שקר). על ידי הפניית שאלת כן/לא אחת, לאחד מבין שלושת האנשים, עליך למצוא אדם אחד שבוודאות אינו העונה באקראי. מה תהיה השאלה?


משפטים מפורסמים
השערות מפורסמות
מבט אל הלוח – משפט או השערה מפורסמים

אי-שוויון ברנולי הוא אי-שוויון יסודי ושימושי באנליזה מתמטית, המאפשר להעריך את הביטוי . האי-שוויון קובע ש- לכל מספר שלם ולכל מספר ממשי . את האי-שוויון אפשר להוכיח באינדוקציה.

בעזרת אי-שוויון זה אפשר להראות שהסדרה עולה בזמן שהסדרה יורדת, וכך להגדיר את בסיס הלוגריתם הטבעי, , כגבולן המשותף.

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

טופולוגיה היא ענף חדש יחסית במתמטיקה. הטופולוגיה עוסקת בתכונות הנוגעות לצורתם של עצמים מופשטים, ומתמקדת בתכונות הנשמרות גם לאחר הפעלת פונקציות שעונות לארבעת הקריטריונים – פונקציות חד חד ערכיות, על, רציפות ובעלות פונקציה הופכית רציפה. פונקציות שכאלו מכונות הומיאומורפיזמים ועצמים שניתן לעבור מהאחד לשני באמצעותן מכונים הומיאומורפיים. בלשון ציורית, ההבדל בין עצמים אלו הן התכונות שנשמרות גם לאחר הפעלת "עיוות", "מתיחה" ו"כיווץ" – למשל, עיגול ומרובע הם הומיאומורפיים, כי ניתן לעקם את המרובע עד לקבלת עיגול, ולהפך. לעומת זאת, צורת הספרה 8 ומעגל אינם הומיאומורפיים, כי בספרה 8 ישנם שני חורים, ובמעגל חור אחד בלבד.


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה