פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

Arithmetic symbols2.svg

ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה.

ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות. במקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין.

באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים.

ריכרד דדקינד, תצלום משנת 1850 לערך

יוליוס וילהלם ריכרד דֶדֶקינד (6 באוקטובר 183112 בפברואר 1916) היה מתמטיקאי גרמני, מממשיכיו הבולטים של ארנסט קומר.

דדקינד נולד בבראונשווייג, והיה הצעיר מבין ארבעת ילדיו של יוליוס לוין אולריך דדקינד. דדקינד מעולם לא השתמש בשני שמותיו הראשונים, וחי עם אחותו הרווקה יוליה עד מותה ב-1914. הוא לא נישא מעולם.

בשנת 1848 החל דדקינד בלימודיו בקולג' המלכותי בבראונשווייג. בשנת 1850, מצויד בבסיס מתמטי חזק, החל ללמוד באוניברסיטת גטינגן. באוניברסיטה זו לימד גאוס, וממנו למד דדקינד על תורת המספרים. בין מוריו החשובים של דדקינד היה גם מוריץ אברהם שטרן שכתב באותו זמן עבודות רבות בתורת המספרים. דדקינד הגיש עבודת דוקטורט קצרה בהנחייתו של גאוס שנקראה "Über die Theorie der Eulerschen Integrale" ("על התאוריה של שלמים אוילריאניים"), אך בעבודה זו לא ניכר הכישרון שייחד את דדקינד בעבודותיו המאוחרות. למרות זאת הכיר גאוס בכישוריו – דדקינד קיבל את הדוקטורט שלו ב-1852 והיה לתלמידו האחרון של גאוס.

Dome of the rock golden ratio.jpg

יחס הזהב הוא קבוע מתמטי המעסיק את המדע והאמנות כבר מאות בשנים. יחס הזהב, שערכו כ- 1.618, מסומן באות היוונית פי (). זהו יחס המייצג מידות וגדלים רבים בטבע והחל מתקופת יוון הקלאסית הוא גם משמש באמנות ובאדריכלות. בתמונה, מוצגת כיפת הסלע שעל פי טענות מסוימות מידותיה נבנו על פי יחס זה.

8-cell.gif

אנימציה תלת-ממדית המציגה את היטליו של טסרקט, גוף ארבע ממדי המהווה הכללה של הקובייה התלת ממדית.

Mainpic134.jpg

אם לוקחים שני גליונות נייר זהים, מקמטים אחד (אך לא קורעים אותו) ומניחים מעל השני כך שאינו חורג מגבולותיו. לפי משפט נקודת השבת של בראואר יש נקודה בגיליון המקומט שנמצאת בדיוק מעל הנקודה המקבילה לה בגיליון השני.

בשלושה ממדים, מסקנה נוספת ממשפט בראואר היא שלא משנה עד כמה מערבבים או בוחשים במשקה הנמצא בכוס, נקודה מסוימת של הנוזל תמיד נשארת באותו מקום בו היא הייתה לפני ערבוב המשקה, בהנחה שהמשקה לאחר הערבוב נותר באותו מרחב בו הוא היה בהתחלה.

מתמטיקה היא השער והמפתח למדעים

אף מחקר אנושי לא יכול להקרא מדע אמיתי אם לא ניתן לבססו מתמטית.

נוסחה להפרש של שני ריבועים. נוסחה בסיסית באלגברה. כמו יתר הנוסחאות באלגברה בסיסית, פיתוח הנוסחה פשוט מאוד ומבוסס על חוק הפילוג, חוק הקיבוץ וחוק החילוף. אולם שימוש בנוסחה "לכיוון השני" מימין לשמאל מאפשר לבצע מניפולציות לא טריוויאליות משום שהוא מחליף ביטוי שעל פניו לא נראה פריק, במכפלה של שני ביטויים פשוטים יותר. על נוסחה זו מבוסס טריק שנקרא מכפלה בצמוד

תירס

אתם עומדים במרכזו של שדה תירס בלילה ללא כוכב וירח. התירס הגבוה מסתיר את כל שמימינכם ומשמאלכם. עליכם להגיע למסילת רכבת ישרה הנמצאת במרחק 10 קילומטרים מכם. בשל הראות הלקויה, רק כאשר תגיעו למסילה תדעו זאת. מצאו את המסלול הקצר ביותר אותו תצטרכו לעבור עד להגעה לפסים המיוחלים במקרה הגרוע ביותר (כלומר במקרה בו מזלכם פועל נגדכם).


Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: Plus (באנגלית)

מגזין אינטרנט בריטי, שנועד לחשוף את הקורא לקסם של המתמטיקה, ועושה זאת בהצלחה רבה, באמצעות מאמרים, ראיונות, חידות ומשחקים.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Innumeracy he.jpg

ג'ון אלן פאולוס, חרדת המספרים – בערות במתמטיקה ותוצאותיה, מאנגלית: עמנואל לוטם, זמורה-ביתן, 1997.

"אי-התמצאות במספרים – חוסר היכולת לטפל בקלות במושגים בסיסיים הנוגעים למספרים ולסיכויים – היא רעה חולה המציקה לאנשים רבים, שניתן לראותם כמשכילים מכל בחינה אחרת" – משפט פתיחה זה משקף את תוכנו של הספר: הצגת שלל כשלים בהתייחסותם של אנשים למידע מספרי. הדוגמאות כוללות הבנה מוטעית של מידע הסתברותי וסטטיסטי, פסוודו-מדע המסתמך על בורות מספרית והקושי להבין מספרים גדולים. כן עוסק הספר בשורשיה של חרדת המספרים. עצתו של פאולוס לקוראיו: "במקרים מסוימים אפשר לשאוב מידע רב מתוך עובדות מספריות פשוטות, ואפשר להפריך טענות רבות על סמך המספרים כשלעצמם. אילו הייתה לבריות יכולת לאמוד מספרים ולערוך חישובים פשוטים, היה לאל ידם להסיק מסקנות (או להפריכן) במבט אחד, ומספר הרעיונות המגוחכים שהם מטפחים היה יורד פלאים."

משפטים מפורסמים
השערות מפורסמות

השאלה האם P=NP היא בעיה פתוחה מרכזית במדעי המחשב, העוסקת ביכולת לפתור אוסף גדול של בעיות בצורה יעילה. במילים פשוטות, השאלה היא האם כל בעיה שניתן לבדוק עבורה בצורה יעילה האם פתרון מוצע הוא נכון (בעיה השייכת לקבוצה NP), היא גם בעיה שניתן למצוא עבורה פתרון בצורה יעילה (בעיה השייכת לקבוצה P). לפתרון הבעיה ישנן השלכות תאורטיות ומעשיות רבות, והיא זכתה להכרה כאחת מ"שבע בעיות המילניום" של מכון קליי למתמטיקה. אף שכיום לא ידועה תשובה לשאלה זו, ההשערה הרווחת היא כי P≠NP.

השאלה האם P=NP אינה בעלת ערך אקדמי בלבד. עם התפתחות השימושים המסחריים של ההצפנה בעידן המחשב, ובמיוחד במסחר אלקטרוני, הפכה התשובה לשאלה לבעלת חשיבות כלכלית לא מבוטלת. הסיבה לכך היא שרוב המסחר האלקטרוני ותעשיית האבטחה הדיגיטלית מסתמכים על אלגוריתמים שיכולת ההצפנה שלהם נובעת מחוסר היכולת הנוכחי לפתור בעיות NP בזמן סביר.

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


קריפטוגרפיה היא ענף במתמטיקה ובמדעי המחשב העוסק בהיבטים השונים של אבטחת מידע בכלל והצפנה בפרט. דוגמאות לנושאים שקשורים באבטחת מידע:

השם "קריפטוגרפיה" מקורו במילה היוונית "קריפטו" שמשמעותה נסתר או אמנות ההסתרה. בתרגום חופשי פירוש השם הוא תורת ההצפנה, אם כי משמעותו מקיפה יותר.


ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה