התפלגות בינומית
פונקציית ההסתברות | |
פונקציית ההסתברות המצטברת | |
---|---|
מאפיינים | |
פרמטרים |
p – ההסתברות ל"הצלחה", n – מספר ניסויי ברנולי |
תומך | |
פונקציית הסתברות (pmf) | |
פונקציית ההסתברות המצטברת (cdf) | |
תוחלת | |
סטיית תקן | |
חציון | |
ערך שכיח | |
שונות | |
אנטרופיה | |
פונקציה יוצרת מומנטים (mgf) | |
פונקציה אופיינית | |
צידוד | |
גבנוניות |
התפלגות בינומית היא התפלגות בדידה, המתארת את מספר ההצלחות בסדרה של ניסויי ברנולי בלתי תלויים עם הסתברות הצלחה בכל אחד. אם משתנה מקרי בינומי המתאים לסדרת ניסויים שכזו מסמנים .
ההתפלגות הבינומית
[עריכת קוד מקור | עריכה]ההתפלגות של משתנה בינומי היא
עבור , ונהוג לסמן את ההסתברות לכישלון בניסוי בודד . הסימון מתייחס למקדם הבינומי, שממנו קיבלה ההתפלגות את שמה.
אכן, ההסתברות להצליח בדיוק פעמים בסדרה של ניסויי ברנולי עם פרמטר הצלחה שווה לסכום ההסתברויות של כל הסדרות האפשריות של תוצאות שיש בהן הצלחות ו- כישלונות. מכיוון שהניסויים בלתי תלויים, הסיכוי של סדרה מסוימת (כגון הצלחה-הצלחה-כישלון-כישלון-הצלחה) שווה למכפלה . לכן ההסתברות הכוללת שווה למספר הדרכים לבחור את הניסויים המוצלחים מתוך כלל הניסויים, שהוא המקדם הבינומי , כפול .
סכום ההסתברויות
[עריכת קוד מקור | עריכה]כמו בכל התפלגות, סכום ההסתברויות לכל התוצאות האפשריות הוא 1. אפשר לסכם את ההסתברויות ישירות על ידי נוסחת הבינום: .
תוחלת ושונות
[עריכת קוד מקור | עריכה]התוחלת של משתנה מקרי בינומי היא , והשונות שלו היא .
דוגמה
[עריכת קוד מקור | עריכה]מטילים פעמים מטבע בעל סיכוי ל"עץ" של . נניח שההטלות הן בלתי תלויות זו בזו. אם נסמן את מספר הפעמים בהן התקבל "עץ" ב- אז . ההסתברות לקבלת "עץ" פעמים בדיוק היא
התפלגות בינומית שלילית
[עריכת קוד מקור | עריכה]- ערך מורחב – התפלגות בינומית שלילית
נאמר שמשתנה מקרי מתפלג בינומית שלילית עם פרמטרים אם
כאשר היא פונקציית גמא המרחיבה את מושג העצרת אל המישור המרוכב.
קשרים להתפלגויות אחרות
[עריכת קוד מקור | עריכה]סכום של משתנים מקריים בינומיים
[עריכת קוד מקור | עריכה]אם וכן הם שני משתנים מקריים בלתי תלויים, בעלי אותו פרמטר הצלחה אז , זאת אומרת סכומם של המשתנים המקריים גם כן מתפלג בינומי.
התפלגות ברנולי
[עריכת קוד מקור | עריכה]התפלגות ברנולי היא מקרה פרטי של התפלגות בינומית כאשר ונהוג לסמן . למעשה, ניתן לראות בכל התפלגות בינומית Bin(n, p) כסכום של התפלגויות ברנולי בלתי תלויות שלכולן אותה הסתברות .
קירוב על ידי התפלגות פואסון
[עריכת קוד מקור | עריכה]ניתן למצוא קירוב להתפלגות הבינומית עבור ערכי גדולים מאוד וערכי קטנים מאוד על ידי שימוש בהתפלגות פואסון עם פרמטר . באופן פורמלי, אם סדרת משתנים מקריים המתפלגים אז כאשר .
קירוב על ידי התפלגות נורמלית
[עריכת קוד מקור | עריכה]אם גדול מספיק חוסר הסימטריה שבהתפלגות לא יהיה גדול, במקרה זה נוכל לקרב את ההתפלגות הבינומית על ידי ההתפלגות הנורמלית . כשמשתמשים בהתפלגות הנורמלית על מנת לקרב התפלגות בינומית, נהוג להשתמש בתיקון רציפות על מנת לשפר את איכות הקירוב.
התפלגויות קשורות
[עריכת קוד מקור | עריכה]עם החזרה | בלי החזרה | |
---|---|---|
מספר הצלחות מתוך מספר הוצאות | התפלגות בינומית | התפלגות היפרגאומטרית |
מספר הוצאות עד מספר הצלחות | התפלגות בינומית שלילית | התפלגות היפרגאומטרית שלילית |
ראו גם
[עריכת קוד מקור | עריכה]קישורים חיצוניים
[עריכת קוד מקור | עריכה]- התפלגות בינומית, באתר MathWorld (באנגלית)
- התפלגות בינומית, באתר אנציקלופדיה בריטניקה (באנגלית)
התפלגויות | ||
---|---|---|
התפלגויות בדידות כלליות | אחידה בדידה • בינומית • מולטינומית • בינומית שלילית • ברנולי • גאומטרית • היפרגאומטרית • היפרגאומטרית שלילית • מנוונת • פואסון | |
התפלגויות רציפות כלליות | אחידה רציפה • בטא • גמא • לוג-נורמלית • מעריכית (אקספוננציאלית) • נורמלית (גאוסית) • לפלס • משולשת • פארטו • ריילי • קושי • כי בריבוע • חצי המעגל של ויגנר• התפלגות טרייסי-וידום | |
התפלגויות בפיזיקה סטטיסטית | בולצמן • בוז-איינשטיין • מקסוול-בולצמן • פרמי-דיראק • זטא | |
התפלגויות נוספות | התפלגות t • התפלגות F • ארלנג • וייבול • לוגיסטית | |
סוגי התפלגויות | בדידה • רציפה • מותנית • נורמלית מוכללת • זנב עבה • לא פריקה • משותפת |