תורת ההומולוגיה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
Gnome-colors-edit-find-replace.svg
יש לשכתב ערך זה. ייתכן שהערך מכיל טעויות, או שהניסוח וצורת הכתיבה שלו אינם מתאימים.
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף. אם אתם סבורים כי אין בדף בעיה, ניתן לציין זאת בדף השיחה.

הומולוגיה של מרחב טופולוגי היא טכניקה ללמידת אוסף תכונות ומאפיינים שונים של מרחבים טופולוגיים. בדומה להומוטופיה, הומולוגיה מודדת שינויים רציפים על פני מרחבים טופולוגיים תחת מעברים שונים. לכל מרחב טופולוגי מתאימה סדרה של חבורות אבליות, , שכל אחת מהן נושאת מידע מסוים על המרחב X.

ההומולוגיה של מרחב טופולוגי גם מאפשרת להבדיל בין מרחבים שונים: למרחבים הומיאומואפיים ואף שקולים הומוטופית אותה ההומולוגיה. במילים אחרות, חבורות ההומולוגיה הן "אינווריאנטים טופולוגיים והומוטופיים". למרות המידע הרב שמספקות חבורות ההומולוגיה, הן אינן מזהות באופן מלא את המרחב - ובאופן כללי ייתכנו מרחבים טופולוגיים לא שקולים בעלי אותן חבורות הומולוגיה; בכל זאת, למשפט וייטהד יש מקבילה הומולוגית, בעזרת משפט הורוויץ.

האינווריאנט ההומולוגי הראשון והפשוט ביותר, החבורה , סופרת את מספר מרכיבי הקשירות המסילתית של המרחב. החבורה הבאה, , איזומורפית באופן טבעי אל האבליניזציה של החבורה היסודית של המרחב.

לחישוב ההומולוגיה של מרחב טופולוגי מספר שיטות. הנפוצה והבסיסית ביניהן היא סדרת מאייר-ויאטוריס, המקשרת את ההומולוגיה של מרחב טופולוגי להומולוגיה של כיסוי טוב שלו, ומקבילה במובן מסוים למשפט ואן קמפן בחישוב החבורה היסודית. בעזרתה גם ניתן לפתח שיטה אלגוריתמית לחישוב מחלקה גדולה של מרחבי CW סוף-ממדיים.

תורת הומולוגיה[עריכת קוד מקור | עריכה]

הגדרה אלגברית[עריכת קוד מקור | עריכה]

תורת הומולוגיה היא אוסף של פנקטורים . דהיינו, פנקטורים שמתאימים לכל זוג מרחבים טופולוגי המקיים חבורה אבלית ומקיימים את התנאים הבאים:

  1. הומוטופיה: לכל שתי פונקציות הומוטופיות ולכל n
  2. סדרה מדויקת: לכל n קיימת פונקציה כך שהסדרה הבאה מדויקת: כשהפונקציות: i היא ההכלה מ-A ל-X ו- מעבירה כל איבר לעצמו.
  3. קיצוץ (Excision): אם כך ש- אז ההכלה משרה איזומורפיזם:
  4. במרחב נקודתי
  5. טבעיות: לכל n ופונקציה של זוגות מתקיים . גרפית, הדיאגרמה הבאה צריכה להתחלף:

מעתה נגדיר , לשם פשטות הסימון.

משפטים בסיסיים[עריכת קוד מקור | עריכה]

המשפטים הבאים יהיו נכונים בכל תורת הומולוגיה המקיימת את האקסיומות של הסעיף הקודם:

  1. לכל מרחב טופולוגי מתקיים
  2. לכל זוג מרחבים טופולוגיים ההכלות משרות איזומורפיזם
  3. לכל n