קוטב (אנליזה מרוכבת) – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
Legobot (שיחה | תרומות)
מ בוט: מעביר קישורי בינויקי לויקינתונים - d:q899731
צ'קטי
שורה 19: שורה 19:
# לפונקציה <math>\ f(z)=\frac{1}{z^n}</math> קיים קוטב מסדר <math>\ n</math> בנקודה <math>\ z=0</math>.
# לפונקציה <math>\ f(z)=\frac{1}{z^n}</math> קיים קוטב מסדר <math>\ n</math> בנקודה <math>\ z=0</math>.
#לפונקציה <math>\ f(z)=\frac{1}{1-\cos z}</math> קיים קוטב מסדר <math>\ 2</math> בנקודה <math>\ z=0</math>. כדי להיווכח בזה די לזכור שהפיתוח לטור טיילור של <math>\ \cos z</math> הוא: <math>\ \cos z=1-\frac{z^2}{2!}+\frac{z^4}{4!}-\dots</math>, ולכן <math>\ f(z)=\frac{1}{1-\cos z}=\frac{1}{1-(1-\frac{z^2}{2!}+\frac{z^4}{4!}-\dots)}= \frac{1}{z^2(\frac{1}{2!}-\frac{z^2}{4!}+\dots)}</math>.
#לפונקציה <math>\ f(z)=\frac{1}{1-\cos z}</math> קיים קוטב מסדר <math>\ 2</math> בנקודה <math>\ z=0</math>. כדי להיווכח בזה די לזכור שהפיתוח לטור טיילור של <math>\ \cos z</math> הוא: <math>\ \cos z=1-\frac{z^2}{2!}+\frac{z^4}{4!}-\dots</math>, ולכן <math>\ f(z)=\frac{1}{1-\cos z}=\frac{1}{1-(1-\frac{z^2}{2!}+\frac{z^4}{4!}-\dots)}= \frac{1}{z^2(\frac{1}{2!}-\frac{z^2}{4!}+\dots)}</math>.
# לפונקציה <math>\ f(z)=e^{1/z}</math> אין קוטב בנקודה <math>\ z=0</math> אלא סינגולריות עיקרית.
# לפונקציה <math>\ f(z)=e^{1/z}</math> אין קוטב בנקודה <math>\ z=0</math> אלא סינגולריות עיקרית.


כשמרחיבים את ההגדרה של פונקציה מרוכבת אל ה[[קומפקטיפיקציה]] של [[המישור המרוכב]] (כלומר, מוסיפים להגדרה את נקודת האינסוף, כמו ב[[ספירת רימן]]), הנקודה <math>\ z=\infty</math> נחשבת לקוטב של <math>\ f(z)</math> מאותו סוג וסדר של הקוטב <math>\ z=0</math> בפונקציה <math>\ f(1/z)</math>.
כשמרחיבים את ההגדרה של פונקציה מרוכבת אל ה[[קומפקטיפיקציה]] של [[המישור המרוכב]] (כלומר, מוסיפים להגדרה את נקודת האינסוף, כמו ב[[ספירת רימן]]), הנקודה <math>\ z=\infty</math> נחשבת לקוטב של <math>\ f(z)</math> מאותו סוג וסדר של הקוטב <math>\ z=0</math> בפונקציה <math>\ f(1/z)</math>.


==מונחים קשורים==
==מונחים קשורים==

גרסה מ־00:04, 27 בינואר 2018

באנליזה מרוכבת, קוטב של פונקציה מרוכבת הוא סוג מסוים של נקודת סינגולריות של הפונקציה (הסוגים האחרים הם סינגולריות סליקה וסינגולריות עיקרית). קוטב היא נקודה, בה הפונקציה שואפת לאינסוף בערכה המוחלט.

הגדרה פורמלית

נקודה היא קוטב של פונקציה מרוכבת , אם הפונקציה אנליטית בסביבה מנוקבת של הנקודה, ומתקיים .

המספר n הקטן ביותר שעבורו הגבול קיים (וסופי), נקרא הסדר של הקוטב. מספר זה תמיד קיים. קוטב מסדר 1 נקרא קוטב פשוט. עבור קוטב פשוט, השארית של הקוטב מוגדרת להיות הגבול .

תכונות של קטבים

הפונקציה ניתנת לפיתוח לטור לורן סביב קוטב מסדר סופי, כאשר הפיתוח מתחיל מהחזקה השלילית . כלומר, . באופן שקול, יש כך שלפונקציה יש נקודה סינגולרית סליקה ב- .

הגבול , עבור מקבל את הערכים הבאים:

  1. אם .
  2. אם .
  3. אם .

דוגמאות

  1. לפונקציה קיים קוטב מסדר בנקודה .
  2. לפונקציה קיים קוטב מסדר בנקודה . כדי להיווכח בזה די לזכור שהפיתוח לטור טיילור של הוא: , ולכן .
  3. לפונקציה אין קוטב בנקודה אלא סינגולריות עיקרית.

כשמרחיבים את ההגדרה של פונקציה מרוכבת אל הקומפקטיפיקציה של המישור המרוכב (כלומר, מוסיפים להגדרה את נקודת האינסוף, כמו בספירת רימן), הנקודה נחשבת לקוטב של מאותו סוג וסדר של הקוטב בפונקציה .

מונחים קשורים

פונקציה מרוכבת שכל נקודות הסינגולריות שלה הן קטבים נקראת פונקציה מרומורפית.