החבורה הליניארית הכללית – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
מ ←‏פתיח: הגהה
מ הגהה, עריכת נוסחאות
שורה 1: שורה 1:
ב[[תורת החבורות]], '''החבורה הליניארית הכללית''' ממעלה <math>\ n</math> מעל ה[[שדה (מבנה אלגברי)|שדה]] <math>\ F</math> היא אוסף ה[[מטריצה הפיכה|מטריצות ההפיכות]] בעלות <math>\ n</math> שורות ועמודות שאיבריהן שייכים לשדה <math>\ F</math>, ביחס לפעולת [[כפל מטריצות|הכפל של מטריצות]]. זוהי [[חבורה (מבנה אלגברי)|חבורה]] שה[[איבר נייטרלי|איבר הנייטרלי]] שלה הוא [[מטריצת היחידה]]. זוהי אחת מהחבורות הבסיסיות הנחקרות בתורת החבורות. [[תת חבורה]] של החבורה הליניארית הכללית נקראת '''חבורה ליניארית''' או בפשטות [[חבורת מטריצות]]. [[שיכון (מתמטיקה)|שיכון]] של חבורה מסוימת בתוך החבורה הליניארית הכללית נקרא [[הצגה ליניארית]] של החבורה.
ב[[תורת החבורות]], '''החבורה הליניארית הכללית''' ממעלה <math>n</math> מעל ה[[שדה (מבנה אלגברי)|שדה]] <math>F</math> היא אוסף ה[[מטריצה הפיכה|מטריצות ההפיכות]] בעלות <math>n</math> שורות ועמודות שאיבריהן שייכים לשדה <math>F</math>, ביחס לפעולת [[כפל מטריצות|הכפל של מטריצות]]. זוהי [[חבורה (מבנה אלגברי)|חבורה]] שה[[איבר נייטרלי|איבר הנייטרלי]] שלה הוא [[מטריצת היחידה]]. זוהי אחת מהחבורות הבסיסיות הנחקרות בתורת החבורות. [[תת חבורה]] של החבורה הליניארית הכללית נקראת '''חבורה ליניארית''' או בפשטות [[חבורת מטריצות]]. [[שיכון (מתמטיקה)|שיכון]] של חבורה מסוימת בתוך החבורה הליניארית הכללית נקרא [[הצגה ליניארית]] של החבורה.


את החבורה הליניארית הכללית ניתן להגדיר באופן שקול כאוסף [[העתקה ליניארית|ההעתקות הליניאריות]] ההפיכות מעל [[מרחב וקטורי]] <math>\ V</math> מ[[ממד (אלגברה ליניארית)|ממד]] <math>\ n</math> מעל השדה <math>\ F</math> היות שכל המרחבים הווקטוריים בעלי ממד סופי שווה הם [[איזומורפיזם|איזומורפיים]], ברור שמבנה החבורה אינו תלוי במרחב הווקטורי שלפיו היא הוגדרה. למעשה, באופן הזה מגדירים את החבורה הליניארית הכללית כ[[חבורת אוטומורפיזמים|חבורת האוטומורפיזמים]] של <math>\ V</math> ב[[קטגוריה (מתמטיקה)|קטגוריה]] של מרחבים וקטוריים. כאשר משתמשים בהגדרה הראשונה מסמנים את החבורה בדרך כלל <math>\ \mathbf{GL}_n (F)</math> או <math>\ \mathbf{GL}(n,F)</math>, וכאשר משתמשים בהגדרה השנייה - <math>\ \mathbf{GL}(V)</math>.
את החבורה הליניארית הכללית ניתן להגדיר באופן שקול כאוסף [[העתקה ליניארית|ההעתקות הליניאריות]] ההפיכות מעל [[מרחב וקטורי]] <math>V</math> מ[[ממד (אלגברה ליניארית)|ממד]] <math>n</math> מעל השדה <math>F</math> היות שכל המרחבים הווקטוריים בעלי ממד סופי שווה הם [[איזומורפיזם|איזומורפיים]], ברור שמבנה החבורה אינו תלוי במרחב הווקטורי שלפיו היא הוגדרה. למעשה, באופן הזה מגדירים את החבורה הליניארית הכללית כ[[חבורת אוטומורפיזמים|חבורת האוטומורפיזמים]] של <math>V</math> ב[[קטגוריה (מתמטיקה)|קטגוריה]] של מרחבים וקטוריים. כאשר משתמשים בהגדרה הראשונה מסמנים את החבורה בדרך כלל <math>\mathbf{GL}_n (F)</math> או <math>\mathbf{GL}(n,F)</math>, וכאשר משתמשים בהגדרה השנייה - <math>\mathbf{GL}(V)</math>.


המאפיינים האלגבריים של [[אלגברה (מבנה אלגברי)|אלגברת]] המטריצות, או לחלופין אלגברת ההעתקות הליניאריות, כגון קיום ה[[דטרמיננטה]], מאפשרים להגדיר מספר תתי חבורות באופן טבעי. לדוגמה החבורה הליניארית המיוחדת, <math>\ \mathbf{SL}_n (F)</math>, היא תת-החבורה של החבורה הליניארית הכללית שמכילה את כל המטריצות בעלות דטרמיננטה 1. <math>\ \mathbf{SL}_n (F)</math> היא [[תת חבורת הקומוטטורים]] של <math>\ \mathbf{GL}_n (F)</math>, והיא בעצמה [[חבורה מושלמת]] אלא אם כן <math>\ n=2</math> והשדה <math>\ F</math> הוא בגודל 2 או 3.
המאפיינים האלגבריים של [[אלגברה (מבנה אלגברי)|אלגברת]] המטריצות, או לחלופין אלגברת ההעתקות הליניאריות, כגון קיום ה[[דטרמיננטה]], מאפשרים להגדיר מספר תתי חבורות באופן טבעי. לדוגמה החבורה הליניארית המיוחדת, <math>\mathbf{SL}_n (F)</math>, היא תת-החבורה של החבורה הליניארית הכללית שמכילה את כל המטריצות בעלות דטרמיננטה 1. <math>\mathbf{SL}_n (F)</math> היא [[תת חבורת הקומוטטורים]] של <math>\mathbf{GL}_n (F)</math>, והיא בעצמה [[חבורה מושלמת]] אלא אם כן <math>n=2</math> והשדה <math>F</math> הוא בגודל 2 או 3.


החבורה הליניארית הכללית אינה [[חבורה אבלית|אבלית]], כל עוד <math>\ n</math> איננו 1. כאשר <math>\ n=1</math>, החבורה הליניארית הכללית היא פשוט החבורה הכפלית של השדה <math>\ F</math>.
החבורה הליניארית הכללית אינה [[חבורה אבלית|אבלית]], כל עוד <math>n</math> איננו 1. כאשר <math>n=1</math>, החבורה הליניארית הכללית היא פשוט החבורה הכפלית של השדה <math>F</math>.


כאשר השדה <math>\ F</math> מעליו החבורה מוגדרת הוא [[שדה המספרים הממשיים]] או [[שדה המספרים המרוכבים|המרוכבים]] <math>\ \mathbf{GL}(n,F)</math> היא [[חבורת לי]] מממד <math>\ n^2</math>. כאשר השדה <math>\ F</math> מעליו החבורה מוגדרת הוא [[שדה סגור אלגברית]] אזי <math>\ \mathbf{GL}(n,F)</math> היא [[חבורה אלגברית]] (חבורה שהיא גם [[יריעה אלגברית]]).
כאשר השדה <math>F</math> מעליו החבורה מוגדרת הוא [[שדה המספרים הממשיים]] או [[שדה המספרים המרוכבים|המרוכבים]] <math>\mathbf{GL}(n,F)</math> היא [[חבורת לי]] מממד <math>n^2</math>. כאשר השדה <math>F</math> מעליו החבורה מוגדרת הוא [[שדה סגור אלגברית]] אזי <math>\mathbf{GL}(n,F)</math> היא [[חבורה אלגברית]] (חבורה שהיא גם [[יריעה אלגברית]]).


==קישורים חיצוניים==
==קישורים חיצוניים==

גרסה מ־16:54, 16 ביוני 2020

בתורת החבורות, החבורה הליניארית הכללית ממעלה מעל השדה היא אוסף המטריצות ההפיכות בעלות שורות ועמודות שאיבריהן שייכים לשדה , ביחס לפעולת הכפל של מטריצות. זוהי חבורה שהאיבר הנייטרלי שלה הוא מטריצת היחידה. זוהי אחת מהחבורות הבסיסיות הנחקרות בתורת החבורות. תת חבורה של החבורה הליניארית הכללית נקראת חבורה ליניארית או בפשטות חבורת מטריצות. שיכון של חבורה מסוימת בתוך החבורה הליניארית הכללית נקרא הצגה ליניארית של החבורה.

את החבורה הליניארית הכללית ניתן להגדיר באופן שקול כאוסף ההעתקות הליניאריות ההפיכות מעל מרחב וקטורי מממד מעל השדה היות שכל המרחבים הווקטוריים בעלי ממד סופי שווה הם איזומורפיים, ברור שמבנה החבורה אינו תלוי במרחב הווקטורי שלפיו היא הוגדרה. למעשה, באופן הזה מגדירים את החבורה הליניארית הכללית כחבורת האוטומורפיזמים של בקטגוריה של מרחבים וקטוריים. כאשר משתמשים בהגדרה הראשונה מסמנים את החבורה בדרך כלל או , וכאשר משתמשים בהגדרה השנייה - .

המאפיינים האלגבריים של אלגברת המטריצות, או לחלופין אלגברת ההעתקות הליניאריות, כגון קיום הדטרמיננטה, מאפשרים להגדיר מספר תתי חבורות באופן טבעי. לדוגמה החבורה הליניארית המיוחדת, , היא תת-החבורה של החבורה הליניארית הכללית שמכילה את כל המטריצות בעלות דטרמיננטה 1. היא תת חבורת הקומוטטורים של , והיא בעצמה חבורה מושלמת אלא אם כן והשדה הוא בגודל 2 או 3.

החבורה הליניארית הכללית אינה אבלית, כל עוד איננו 1. כאשר , החבורה הליניארית הכללית היא פשוט החבורה הכפלית של השדה .

כאשר השדה מעליו החבורה מוגדרת הוא שדה המספרים הממשיים או המרוכבים היא חבורת לי מממד . כאשר השדה מעליו החבורה מוגדרת הוא שדה סגור אלגברית אזי היא חבורה אלגברית (חבורה שהיא גם יריעה אלגברית).

קישורים חיצוניים