כוח קוריוליס

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
הדגמה של אפקט קוריוליס
תנועת האוויר סביב שקע ברומטרי מעל איסלנד בהשפעת כוח קוריוליס

כוח קוֹרִיוֹלִיס, הנקרא גם אפקט קוריוליס, מתבטא בכך שביחס למערכת מסתובבת גופים סוטים מהתנועה בקו ישר, גם כאשר לא פועלים עליהם כוחות חיצוניים. הכוח נקרא על שם המדען הצרפתי גספאר קוריוליס, שתיאר אותו לראשונה ב-1835, אם כי עוד ב-1778 הוא הופיע בחישוביו של לפלס.

לרוב, כשמדברים על תנועה, מתכוונים לתנועה ביחס לכדור הארץ. היות שגם כדור הארץ הוא מערכת מסתובבת, יש להתחשב באפקט קוריוליס בניתוח תנועת גופים יחסית אליו, אך בדרך כלל השפעת האפקט זניחה. למשל, השפעתו של כוח קוריוליס על כיוון ירידת המים בכיור זניחה. לעומת זאת, לכוח קוריוליס תפקיד חשוב במטאורולוגיה ובחישובים ארטילריים. בהסתמך על אפקט קוריוליס, הוכיח פוקו ב-1851 כי כדור הארץ מסתובב סביב צירו (ראו מטוטלת פוקו).

כוח קוריוליס הוא כוח מדומה[עריכת קוד מקור | עריכה]

כוח קוריוליס הוא כוח מדומה, המופיע כיוון שמערכת ייחוס מסתובבת איננה אינרציאלית (היא נעה באופן מורכב יותר מתנועה קווית בקצב קבוע). כמו כוחות מדומים אחרים, הוא תלוי במערכת הייחוס. במקום להתחשב בכוח קוריוליס בתנועה ביחס למערכת ייחוס מסתובבת, ניתן להשתמש במערכת לא מסתובבת ולתאר את התנועה ביחס אליה, מבלי להתחשב בכוחות מדומים. כיוון שזהו כוח מדומה, הוא אינו מתנהג לפי עקרון הפעולה והתגובה (החוק השלישי של ניוטון). כאשר עובדים במערכת מסתובבת חשוב לזכור כי ישנו כוח מדומה נוסף, הנקרא הכוח הצנטריפוגלי.

חישוב כוח קוריוליס[עריכת קוד מקור | עריכה]

במקרה בו התנועה היא רק במישור הניצב לציר הסיבוב (כמו בקרוסלה, למשל), ניתן לחשב את כוח קוריוליס לפי שני הכללים הפשוטים הבאים:

  • גודלו של הכוח נתון על ידי

כאשר היא המהירות הזוויתית, היא מהירות הגוף, ו היא מסתו.

  • הכוח תמיד ניצב לכיוון המהירות, ובמישור התנועה (ניצב לציר הסיבוב); אם המערכת מסתובבת בכיוון השעון, הכוח יהיה מכוון שמאלה מהמהירות, ואם המערכת מסתובבת נגד כיוון השעון, הכוח יהיה מכוון ימינה מהמהירות (ראו אנימציה משמאל).

הערה: כיוון הסיבוב וכיוון הכוח תלויים בבחירת הצד ממנו מסתכלים על מישור התנועה. אבל נוכל לבחור צד באופן שרירותי, כיוון שהמעבר לצד השני הופך גם את כיוון הסיבוב (עם\נגד כיוון השעון) וגם את כיוון הכוח ביחס למהירות (שמאל/ימין), כך שהכלל תקף משני הצדדים.

ניתן לתאר את הקשר בין וקטור המהירות של הגוף, , וקטור המהירות הזוויתית של המערכת , וכוח קוריוליס באמצעות מכפלה וקטורית:

פרט לכך שהוא תמציתי יותר, לניסוח זה יתרון נוסף: הוא מתאר את כוח קוריוליס במקרה הכללי, בו התנועה אינה מוגבלת למישור הניצב לציר הסיבוב של המערכת. מאידך, ניתן לחשב את כוח קוריוליס לפי הכללים דלעיל גם במקרה הכללי, אם מתעלמים מהרכיב של המהירות המקביל לציר הסיבוב.

הסבר אינטואיטיבי לכוח קוריוליס[עריכת קוד מקור | עריכה]

נניח שאנו עומדים על קרוסלה המסתובבת בקצב קבוע נגד כיוון השעון. על הקרוסלה מצויר קו ישר ממרכז הקרוסלה החוצה. אם נדמיין שאנו מנסים ללכת לאורך הקו, נגלה שעלינו להאיץ שמאלה על מנת להתאים את מהירותנו למהירות רצפת הקרוסלה (בין אם אנחנו הולכים לכיוון מרכז הקרוסלה או ממנו החוצה). כלומר נרגיש כאילו גופנו נמשך ימינה. משיכה זו היא כוח קוריוליס.

כיוון שהמהירות הזוויתית קבועה, כאשר המשקולות מתרחקות ממרכז הסיבוב המוטות מאיצים אותן נגד כיוון השעון, כך שמהירותן גדלה. כשהן מתקרבות למרכז הסיבוב המוטות מאיצים אותן עם כיוון השעון, כך שמהירותן קטנה. כך או כך, המוטות מפעילים עליהן כוח שכיוונו שמאלה מכיוון התנועה היחסית שלהן. במערכת ייחוס המסתובבת יחד עם המוטות, הכוח שהמוטות מפעילים בדיוק מאזן את כוח קוריוליס, הפועל ימינה מכיוון התנועה

במילים אחרות, נניח שאנו עומדים מחוץ לקרוסלה ומסתכלים על גוף שנע לאורך הקו הישר ששרטטנו, ביחס לקרוסלה. כפי שהוסבר לעיל, הגוף חייב להאיץ שמאלה (מנקודת המבט שלנו, מבחוץ), ולכן חייב לפעול עליו כוח ממשי שמאלה (ר' תרשים). לעומת זאת, במערכת הייחוס של הקרוסלה, הגוף נמצא בשיווי משקל. נדמה שמופיע כוח המאזן את הכוח שמאלה. כוח מדומה זה, המכוון ימינה, הוא כוח קוריוליס.

נשים לב שהכוח ניצב למהירות, ופרופורציוני לה: ככל שנלך מהר יותר לאורך הקו, כך נצטרך להאיץ מהר יותר על מנת להתאים את עצמנו לרצפת הקרוסלה.

עד כה הסברנו מדוע כאשר מתקרבים אל מרכז הקרוסלה או מתרחקים ממנו, חווים כוח. אך מדוע אנו מצפים לחוות כוח כאשר אנו נעים סביב המרכז, מבלי להתקרב או להתרחק ממנו? ובכן, נמחק את הישר שעל רצפת הקרוסלה, ונצייר במקומו מעגל. נדמיין שאנו הולכים לאורכו במהירות קבועה. מצב זה שקול למצב שבו היינו שרויים במנוחה במערכת אחרת, שמסתובבת מהר יותר, או לאט יותר, בהתאם לאם אנו הולכים נגד כיוון השעון או עם כיוון השעון (נזכור שהקרוסלה מסתובבת נגד כיוון השעון). כלומר נצפה שהכוח הצנטריפוגלי שנחווה יגדל, או יקטן, בהתאמה. במילים אחרות, אם נחזור למערכת המקורית של הקרוסלה (זו שביחס אליה אנו נמצאים בתנועה) נצטרך להוסיף תיקון לכוח הצנטריפוגלי: כוח נוסף, שתמיד יהיה מכוון כלפי ימין (בין אם אנחנו נעים עם כיוון השעון או נגדו) - כוח קוריוליס.

תוכלו להראות, שאף על פי שההסבר לכוח נראה שונה למדי למקרה שאנו נעים על קו ישר או לאורכו של המעגל, גודלו של הכוח זהה, ונתון על ידי (ראו גם פסקה על "אפקט Eötvös" בהמשך הערך).

אם נמחק גם את המעגל ונתקדם בכיוון כלשהו, נוכל לפרק את התנועה לרכיב "בכיוון המרכז" (רכיב רדיאלי) ולרכיב "על המעגל" (רכיב משיקי). כיוון שהיחס בין הכוח למהירות שווה בשני המקרים, וכיוון שהכוחות שחישבנו קודם היו ניצבים לרכיבי המהירות המתאימים ומכוונים כלפי ימין, נקבל שסכום הכוחות יהיה ניצב לסכום המהירויות, וכיוונו - ימינה. קיבלנו בדיוק את כוח קוריוליס המתואר בפסקה הקודמת.

פיתוח מתמטי[עריכת קוד מקור | עריכה]

כוח קוריוליס הפועל על גופים שנעים מערבה על פני כדור הארץ. בקו המשווה הכוח פועל כלפי מטה (לכוון מרכז כדור הארץ), בעוד שבצפון כדור הארץ הכוח פועל כלפי מטה וצפונה, ובדרום כדור הארץ הכוח פועל כלפי מטה ודרומה.

הפיתוח משתמש בקשר בין הנגזרת של וקטור במערכת אינרציאלית לנגזרתו במערכת מסתובבת. עבור כל וקטור מתקיים השוויון:

.

כאשר הוא הנגזרת של במערכת האינרציאלית, ו הוא הנגזרת של במערכת המסתובבת במהירות זוויתית יחסית אליה. כלומר, מציגים את הווקטור במערכת הצירים המסתובבת וגוזרים אותו במערכת הצירים הזו, תוך התעלמות מכך שהצירים עצמם משתנים בזמן.

בפרט, עבור התאוצה והמהירות, מתקיים:

,

אם נציב את הביטוי למהירות בביטוי של התאוצה, נקבל:


(השתמשנו בדיסטריביוטיביות של מכפלה וקטורית).

בהנחה ש קבוע (ולכן ) ניתן לפתוח את הנגזרת כך:

עתה נציב את הביטוי שקיבלנו, ונגיע ל:

.

כאשר היא תאוצת קוריוליס, ו היא התאוצה הצנטריפוגלית המוכרת

(גודל ביטוי זה הוא ).

והכוח המדומה שיצפה במערכת המסתובבת הוא

.

האיבר הראשון בביטוי זה הוא כוח קוריוליס, והאיבר השני הוא הכוח הצנטריפוגלי. אם ניצב ל- אז הכוח הצנטריפוגלי הוא פשוט הביטוי המוכר:

קל לראות מהפיתוח שאם לא קבוע, כלומר (ישנה תאוצה זוויתית), הרי מלבד כוח קוריוליס והכוח הצנטריפוגלי יש להוסיף כוח מדומה נוסף השווה ל , אולם הפיתוח כולו מתבסס על ההנחה שציר הסיבוב הוא קבוע, ולכן הנוסחה נכונה רק אם משתנה רק בגודלו ולא בכיוונו משום שאז כל הפיתוח שגוי.

הסבר פשוט עם פיתוח מתמטי פשוט[עריכת קוד מקור | עריכה]

כוח קוריוליס מתקבל כאשר אדם הנמצא על שולי דיסקה מסתובבת מנסה לנוע במהירות קבועה בכיוון הרדיוס לכיוון מרכז המעגל. הכוח יופיע במאונך לכיוון ההתקדמות, במישור הדיסקה, מימין או משמאל (תלוי בכיוון סיבוב הדיסקה). לאדם על הדיסקה זהו כוח שאין לו הסבר ולכן נקרא "כוח מדומה", אולם לצופה מחוץ לדיסקה הכוח הוא כוח ממשי מאחר שהוא רואה שהמהירות המשיקית של האדם הנע על הדיסקה (לאורך הרדיוס) משתנה, ולכן מן ההכרח שפועל כוח שמקטין את המהירות המשיקית. זהו כוח קוריוליס.

חשוב להבין שמבחינת האדם על הדיסקה אין לו מהירות משיקית (מבחינתו אין סיבוב) אולם יש לו מהירות רדיאלית (מהירות בכיוון הרדיוס), אולם הצופה מבחוץ רואה גם את המהירות המשיקית וגם את המהירות הרדיאלית של האדם על הדיסקה.

ההוכחה שלהלן מתבצעת תוך התבוננות מחוץ לדיסקה:

תהי θ הזווית ברדיאנים, R רדיוס הדיסקה ו-S אורך קשת המעגל (המתאימה לזווית θ).

ידוע כי את אורך הקשת ניתן לתאר על ידי הנוסחה , ברור שלצופה מבחוץ גם R וגם θ הן פונקציות של t מאחר שהתנועת האדם על הדיסקה מתבצעת גם לאורך הרדיוס וגם בכיוון משיקי (מעצם סיבוב הדיסקה)

כדי למצוא את המהירות המשיקית נבצע גזירה לפי מכפלה (נשים לב , , מהירות זוויתית)

ולכן נקבל את המשוואה ( מהירות משיקית, מהירות רדיאלית, מהירות זוויתית)

כדי לקבל את התאוצה המשיקית (תאוצת קוריוליס) נגזור את המהירות המשיקית ונשים לב לכך ש וגם קבועים בזמן כלפי הצופה מחוץ לדיסקה.

ונקבל נסדר את המשוואה ונקבל (תאוצת קוריוליס)

ומכאן כוח קוריוליס

הערה: זהו תיאור סקלרי בלבד המתאר את גודל הכוח ולא את כיוונו.

עבודה[עריכת קוד מקור | עריכה]

כוח קוריוליס זהותית אינו מבצע עבודה. נזכיר כי הגדרת העבודה נתונה על ידי , כלומר, האינטגרל של המכפלה הסקלארית של הכוח הפועל על אלמנט של הדרך (המסלול), לאורך מסלול מסוים וקבוע . על ידי הצבת כוח קוריוליס נקבל כי עבודתו - . היות שהוקטור המתקבל מהמכפלה יהיה וקטור מאונך וקטור (נובע מתכונות המכפלה הווקטורית) כשנכפול סקלארית את הווקטור החדש שמתקבל (שמאונך ל) באלמנט של הדרך (מכפלה סקלארית של שני וקטורים מאונכים), נקבל באופן זהותי, תוצאה שנובעת מתכונות המכפלה הסקלארית.

כלומר, כוח קוריוליס אינו מבצע עבודה.

חשיבותו של כוח קוריוליס במטאורולוגיה[עריכת קוד מקור | עריכה]

הצגה סכמטית של זרימת האוויר מסביב לאזור לחץ-נמוך בחצי הכדור הצפוני. מספר רוסבי של המערכת נמוך, ולפיכך הכוחות הצטריפוגליים זניחים. כוח גרדיאנט הלחץ מיוצג על ידי חצים כחולים, ותאוצת קוריוליס (שתמיד ניצבת למהירות) מיוצגת על ידי החצים האדומים.

אולי התוצא החשוב ביותר של אפקט קוריוליס הוא השפעתו על הדינמיקה בקנה מידה גדול של האוקיינוסים והאטמוספירה. במטאורולוגיה ואוקיינוגרפיה, נוח לתאר את הדברים ממערכת ייחוס מסתובבת שבה כדור הארץ נייח. לפיכך, יש להתחשב בכוח הצנטריפוגלי ובכוח קוריוליס. החשיבות היחסית של הכוחות האלה נקבעת על פי מספר רוסבי - פרמטר חסר ממדים המוגדר על ידי היחס בין האורך האופייני שבו השפעת כוח קוריוליס ניכרת לבין האורך האופייני של מערכת מזג האוויר. לסופות טורנדו יש מספר רוסבי גבוה, כך שבעוד שהכוחות הצנטריפוגליים המקושרים לטורנדו הם די משמעותיים, כוחות קוריוליס המקושרים לטורנדו נזנחים בחישובים.

מכיוון שזרמי ים בפני השטח של האוקיינוס מונעים על ידי תנועת הרוח מעל פני המים, כוח קוריוליס משפיע גם על התנועה של זרמי ים והוריקנים. רבים מהזרמים האוקיינים הגדולים ביותר סובבים סביב אזורים חמימים בעלי לחץ גבוה המכונים gyres. אף על פי שהסירקולציה של מי הים אינה משמעותית כמו זו של האוויר, ההסטה הנגרמת על ידי אפקט קוריוליס היא מה שיוצר את התבנית הספירלית של הזרימה באזורים הללו. במקרה האטמוספירי, התבנית הספירלית של הרוח היא מה שעוזר להוריקנים להיווצר - ככל שהכוח מאפקט קוריוליס חזק יותר, כך גם הרוח סובבת סביב מרכז הלחץ הנמוך ואוספת אנרגיה מהים מהר יותר, מה שמחזק את עוצמת ההוריקן.

האוויר במערכות לחץ-גבוה סובב במגמה כזאת שכוח קוריוליס מצביע רדיאלית פנימה, כשהוא כמעט מתאזן על ידי כוח גרדיאנט הלחץ המצביע החוצה. כתוצאה, האוויר סובב במגמת השעון מסביב לרמה ברומטרית בחצי הכדור הצפוני ונגד כיוון השעון בחצי הכדור הדרומי. אוויר מסביב לשקע ברומטרי סובב בכיוון ההפוך, כך שכוח קוריוליס מכוון רדיאלית החוצה וכמעט מאזן את גרדיאנט הלחץ המכוון פנימה.

זרימה מסביב לשקע ברומטרי[עריכת קוד מקור | עריכה]

אם שקע ברומטרי נוצר באטמוספירה, האוויר נוטה לזרום ישירות אליו, אבל מוטה בניצב למהירות שלו על ידי כוח קוריוליס. מערכת זרימה מעגלית בשיווי משקל מתהווה בדרך זו, שמכונה זרימה ציקלונית. מכיוון שמספר רוסבי נמוך, מאזן הכוחות הוא בעיקר בין כוח גרדיאנט הלחץ הפועל אל תוך השקע וכוח קוריוליס הפועל החוצה ממרכז הלחץ הנמוך.

במקום לזרום ישירות במורד הגרדיאנט, תנועות בקנה מידה גדול באמטוספירה והאוקיינוס נוטות להיות בניצב לגרדיאנט הלחץ. מצב כזה מכונה זרימה גיאוסטרופית. על כוכב לכת לא-מסתובב, זורמים היו זורמים לאורך הקו הישיר ביותר האפשרי, תוך שהם מעלימים במהירות הפרשי לחצים. המאזן הגיאוסטרופי הוא לפיכך שונה מאוד מהמקרה של "תנועות אינרציאליות" (ראו למטה).

מעגלים אינרציאליים[עריכת קוד מקור | עריכה]

הצגה סכמטית של מעגלים אינרציאליים בהיעדרם של כוחות אחרים. גודלי המעגלים המוצגים כאן מתאימים למהירות רוח של 50 עד 70 מטרים לשנייה.

גוש של אוויר או מים הנע במהירות ונתון רק להשפעת כוח קוריוליס ינוע במסלול מעגלי המכונה מעגל אינרציאלי. כיוון שהכוח תמיד מכוון בזוויות ישרות ביחס לתנועת הגוש, הגוש ינוע במהירות קבועה מסביב למעגל שרדיוסו ניתן בנוסחה:

כאשר היא תדירות קוריוליס (כאן הוא קו הרוחב). הזמן הלוקח לגוש להשלים סיבוב מלא הוא לפיכך . הערך האופייני של תדירות קוריוליס בקווי הרוחב הבינוניים הוא ; לפיכך בעבור מהירות רוח טיפוסית של 10 מטרים לשנייה הרדיוס יהיה 100 קילומטרים וזמן המחזור בערך 17 שעות. בעבור זרם ים במהירות אופיינית של 10 סנטימטרים לשנייה, רדיוס המעגל האינרציאלי יהיה קילומטר אחד.

על כוכב לכת מסתובב, משתנה עם קו הרוחב ועל כן מסלולי הגושים אינם מעגלים מושלמים. כיוון שהפרמטר יחסי לסינוס קו הרוחב, רדיוס התנודות עבור מהירות ספציפית הוא קטן ביותר בקטבים (קו רוחב = ±90°) וגדל עם הקרבה לקו המשווה.

אפקט Eötvös[עריכת קוד מקור | עריכה]

חשיבותו המעשית של "אפקט קוריוליס" נובעת בעיקרה על ידי רכיב התאוצה האופקית שלו הנגרמת על ידי תנועה אופקית.

ישנם רכיבים נוספים לכוח קוריוליס. גופים הנעים מערבה יוטו מטה (כלומר ירגישו כבדים יותר), בעוד גופים הנעים מזרחה יוטו מעלה (ירגישו קלים יותר). תוצא זה ידוע כ"אפקט Eötvös". רכיב זה של כוח קוריוליס הוא מרבי בקו המשווה. הכוח המופק על ידי אפקט זה הוא דומה לרכיב האופקי (כלומר מאותו סדר גודל), אבל הכוחות האנכיים החזקים בהרבה אודות לכבידה וללחצים שונים גורמים לרכיב זה להיות בלתי חשוב מבחינה דינמית.

בנוסף, גופים הנעים מעלה (כלומר החוצה מכדור הארץ) או מטה (אל מרכז כדור הארץ) יוטו מערבה או מזרחה בהתאמה. אפקט זה גם הוא מרבי בקו המשווה. מכיוון שתנועה אנכית בדרך כלל נמשכת משך זמן מוגבל, גודלו של אפקט זה מוגבל ומצריך מכשירי מדידה מדויקים כדי לגלותו. עם זאת, במקרה של שינויים גדולים בתנע, כמו במקרה של מעבורת חלל המשוגרת למסלול, האפקט הזה הופך למשמעותי. המסלול המהיר והחסכוני בדלק ביותר הוא שיגור מקו המשווה במסלול שמתעקל מזרחה.

דוגמה אינטואיטיבית[עריכת קוד מקור | עריכה]

נדמיין רכבת שנוסעת לאורך מסילה חסרת חיכוך הנמתחת לאורך קו המשווה. נניח גם, שכשהיא בתנועה, היא נוסעת במהירות מספיקה כדי להשלים הקפה מסביב לעולם ביום אחד (465 m/s). נתייחס לאפקט קוריוליס בשלושה מקרים: כאשר הרכבת נוסעת מערבה, כאשר היא במנוחה, וכאשר היא נוסעת מזרחה. בכל מקרה, כוח קוריוליס יחושב תחילה במערכת הייחוס המסתובבת של כדור הארץ, ולאחר מכן ייבדק במערכת ייחוס אינרציאלית. האנימציה ממחישה את שלושת המקרים כפי שהם נראים על ידי צופה במנוחה במערכת אינרציאלית הממוקם בנקודה קבועה מעל הקוטב הצפוני הנמצאת על ציר הסיבוב של כדור הארץ; הרכבת מסומנת באדום, והיא קבועה במקומה בהמחשה השמאלית, ונעה באחרות :

Earth and train

1. הרכבת נוסעת מערבה: במקרה זה, היא נעה נגד מגמת הסיבוב. לפיכך, במערכת הייחוס המסתובבת של כדור הארץ כוח קוריוליס מכוון פנימה לכיוון ציר הסיבוב של כדור הארץ (מטה). כוח נוסף זה יגרום לרכבת להיות כבדה יותר כאשר היא נעה בכיוון זה.

  • אם נסתכל על הרכבת הזאת במערכת הייחוס הלא מסתובבת של הצופה מעל הקוטב הצפוני, במהירות זו הרכבת נותרת נייחת כאשר כדור הארץ סובב מתחתיה. מכאן, הכוח היחידי הפועל עליה הוא הכבידה וכוח התגובה מהמסילה (כוח נורמלי). כוח זה גדול יותר (ב-0.34%) מאשר הכוח שנוסעים ברכבת יחוו כאשר היא במנוחה (כלומר סובבת ביחד עם כדור הארץ). ההבדל נגרם בדיוק על ידי כוח קוריוליס (שנצפה במערכת הייחוס המסתובבת).

2. הרכבת עוצרת: מנקודת המבט של מערכת הייחוס הסובבת של כדור הארץ, מהירות הרכבת היא אפס, ולפיכך כוח קוריוליס הוא גם אפס והרכבת ונוסעיה יחוו את משקלם הרגיל.

  • מנקודת המבט של הצופה מעל כדור הארץ, הרכבת כעת סובבת ביחד עם שאר כדור הארץ. 0.34% מכוח הכבידה מספק את הכוח הצנטריפטלי הדרוש כדי להשיג את התנועה המעגלית במערכת ייחוס זו. הכוח הנותר, כפי שנמדד על ידי מכשיר מדידה, הופך את הרכבת והנוסעים ל"קלים יותר" מאשר במקרה הקודם.

3. הרכבת נוסעת מזרחה. במקרה זה, מכיוון שהיא נעה בכיוון הסיבוב של כדור הארץ, כוח קוריוליס יכוון החוצה מציר הסיבוב (מעלה). הכוח העילי הזה יהפוך את הרכבת לקלה אף יותר מאשר כשהיא במנוחה (כמו במקרה 2).

  • ממערכת הייחוס האינרציאלית מעל הארץ, הרכבת נעה מזרחה במהירות כפולה מזו שהיא נעה במקרה 2 - כך שכמות הכוח הצנטריפטלי הנדרשת כדי שהרכבת תנוע במסלולה המעגלי משאירה מעט יותר כוח מהכבידה כדי לפעול על המסילה. ההבדל הוא בדיוק כוח קוריוליס.

הוכחת שקילות האפקט בין שתי מערכות הייחוס[עריכת קוד מקור | עריכה]

הנוסחה להבדל בין משקלו של עצם כשהוא נע לעומת כשהוא נייח היא:

כאן,

הוא התאוצה הרדיאלית המקזזת חלק מהמשקל
היא מהירותו הזוויתית של כדור הארץ
היא המהירות בכיוון מזרח-מערב
הוא קו הרוחב שבו המדידות מבוצעות
היא המהירות בכיוון צפון-דרום
הוא רדיוס כדור הארץ

האיבר הראשון בנוסחה, , הוא האיבר המתאים לכוח קוריוליס ואפקט Eötvös, בעוד שהאיבר השני הוא תיקון נוסף שאינו נובע מכוח קוריוליס אלא מעקמומיות כדור הארץ - העצם הנע נדרש לעקוב במסלולו אחר קרקע עקומה. בתנאים נורמליים (מהירויות נמוכות) האיבר השני קטן בהרבה מאפקט Eötvös.

גזירת הנוסחה[עריכת קוד מקור | עריכה]

את הנוסחה ניתן לקבל מהנוסחה הבסיסית לכוח צנטריפטלי בתנועה מעגלית (הכבידה לא משתנה). התאוצה הצנטריפטלית הנדרשת מעצם כדי לנוע במסלול מעגלי ברדיוס R היא . עקב סיבוב כדור הארץ, לעצם נייח יש מהירות התחלתית בכיוון מזרח-מערב שגודלה . מהירותו הכוללת בכיוון מזרח-מערב היא לפיכך:

. מהירותו בכיוון צפון-דרום היא פשוט . לפיכך ריבוע מהירותו הכוללת הוא (לפי משפט פיתגורס):

האיבר האחרון באגף ימין - - נכנס כבר "ממילא" לחישוב המשקל במקרה הנייח (כלומר הוא מקזז חלק ממשקל העצם כבר כשהוא במנוחה), ולפיכך הוא לא תורם כלום להבדל . לפיכך:

.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא כוח קוריוליס בוויקישיתוף