קבוצות זרות

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
דיאגרמת ון של שתי קבוצות זרות: A ו-B

במתמטיקה, זוג קבוצות הן זרות אם אין להן איבר משותף. לדוגמה, ו- הן קבוצות זרות.

הסבר[עריכת קוד מקור | עריכה]

על פי ההגדרה, זוג קבוצות ו- הן זרות אם החיתוך שלהן הוא הקבוצה הריקה, כלומר אם מתקיים:

עבור כל אוסף של קבוצות מוגדר כי הקבוצות באוסף הן זרות בזוגות אם כל זוג קבוצות (שונות) באוסף הוא זר, כלומר לכל זוג אינדקסים שונים, ו-, מתקיים:

לדוגמה, הקבוצות באוסף הקבוצות הבא הן זרות בזוגות.

אם הוא אוסף קבוצות זרות בזוגות אז החיתוך שלו הוא ריק,

לעומת זאת, הכיוון ההפוך אינו נכון: החיתוך של האוסף הוא ריק, אך הקבוצות בו אינן זרות בזוגות, למעשה אין שום זוג קבוצות זרות באוסף.

חלוקה[עריכת קוד מקור | עריכה]

Postscript-viewer-shaded.png ערך מורחב – חלוקה (תורת הקבוצות)

חלוקה של קבוצה היא פירוק של הקבוצה לאוסף של תת-קבוצות זרות שאיחודן הוא הקבוצה עצמה.

במילים אחרות, בהינתן קבוצה , הקבוצות הן חלוקה של , אם הן זרות בזוגות וכן :.[א]

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא קבוצות זרות בוויקישיתוף

ביאורים[עריכת קוד מקור | עריכה]

  1. ^ לשם הפשטות, ניתנה דוגמה של אוסף בן מניה, אך חלוקה מוגדרת גם על אוסף לא בן-מניה של קבוצות.