לדלג לתוכן

שדה המספרים האלגבריים

מתוך ויקיפדיה, האנציקלופדיה החופשית
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

במתמטיקה, שדה המספרים האלגבריים הוא השדה הכולל את כל המספרים המרוכבים האלגבריים מעל הרציונליים, כלומר, את כל המספרים שהם שורש לפולינום כלשהו בעל מקדמים רציונליים. השדה כולל את שורש 2, השורש העשירי של 7, השורשים של וכדומה, אבל לא את פאי או e, שהם טרנסצנדנטיים.

שדה המספרים האלגבריים סגור אלגברית. הוא אינו נוצר סופית, משום שכל תת שדה נוצר סופית שלו הוא בעל ממד סופי, היינו, שדה מספרים, ואינו מכיל את כל המספרים האלגבריים. מאידך, שדה המספרים האלגבריים הוא הסגור האלגברי של כל שדה מספרים.

חבורת גלואה של שדה המספרים האלגבריים (מעל הרציונליים), היינו, חבורת גלואה האבסולוטית של הרציונליים, היא, ישירות ובעקיפין, אובייקט החקירה המרכזי בתורת המספרים האלגברית.


תרשים מערכות מספרים ואובייקטים קשורים
 
          
מקרא
שדה.
חוג קמוטטיבי עם יחידה.
חוג עם חילוק.
מבנה כללי יותר.
קבוצה סופית
קבוצה בת מניה
קבוצה מעוצמת הרצף
מחלקה הגדולה מכדי להיות קבוצה
 
שיכון
 
העתקה על
איזומורפיזם לא קאנוני.
העתקה שקיימת רק בחלק מהמקרים (בהתאם לבחירה של שדה המספרים ). ללא העתקות אלה וללא האיזומורפיזמים הלא קאנוניים, הדיאגרמה היא קומוטטיבית.
 
 
 
 
 
 
 
 
 
 
 
מבנים ארכימדיים
 
 
 
 
 
 
 
 
מבנים אדליים ו - p-אדיים
 
          
 
                    
 
          
 
          
 
               
 
          
 
          
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
מבנים ממאפיין חיובי
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. ^ יכול להיות כל שדה מספרים. השדה יהיה ההשלמה שלו במקום סופי שלו, והשדה הסופי יהיה מנה של חוג השלמים באידיאל הראשוני המתאים. לדוגמה אפשר לקחת את ואז יהיה חוג השלמים של גאוס. אם רוצים ששני החיצים המקווקוים ייצגו העתקות אז צריך לבחור שדה שיש לו גם שיכונים ממשיים וגם מרוכבים, למשל .
  2. ^ הסימבול יכול לסמן משתנה אחד או כל קבוצה סדורה היטב של משתנים. יש שיכון בין אובייקט המתאים לקבוצה של משתנים לבין אובייקט המתאים לקבוצה של משתנים המכילה את .