התפלגות היפרגאומטרית

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
התפלגות היפר גאומטרית
פרמטרים P

פונקציית הסתברות
(pmf)
תוחלת
סטיית תקן
שונות
פונקציה יוצרת מומנטים
(mgf)
צידוד
גבנוניות

התפלגות היפרגאומטרית היא התפלגות של המשתנה המקרי הבדיד הסופר את ההצלחות בקבוצה חלקית של ניסויי ברנולי, כאשר ידוע מספר ההצלחות בסדרת הניסויים כולה. המשתנה X מתפלג ("היפרגאומטרית עם הפרמטרים N,D,n") אם הוא סופר את מספר ההצלחות ב-n הניסויים הראשונים מתוך N, כשידוע שבסדרת הניסויים כולה היו D הצלחות. כך לדוגמה, התפלגות זו מתארת מספר הכדורים הלבנים שמתקבלים כאשר מוציאים n כדורים מכד שיש בו N כדורים, ומתוכם יש D כדורים לבנים.

ההסתברות לכך ש- היא .

דוגמאות ויישומים[עריכת קוד מקור | עריכה]

אחת הדוגמאות הנפוצות לשימוש בהתפלגות היפרגאומטרית היא הוצאת כדורים מכד ללא החזרה.

בדוגמה ישנו כד עם D כדורים בצבע א' ו-S כדורים בצבע ב' ומוציאים n כדורים מהכד ללא החזרה, כדי לחשב את המשתנה המקרי של מס' הכדורים מצבע א' שייצאו מהכד יש להציב את הנתונים בנוסחה כאשר , ושאר הנתונים בהתאמה.