התפלגות קושי
פונקציית צפיפות ההסתברות | |
פונקציית ההסתברות המצטברת | |
---|---|
מאפיינים | |
פרמטרים | החציון, סקלה |
תומך | |
פונקציית צפיפות הסתברות (pdf) | |
פונקציית ההסתברות המצטברת (cdf) | |
תוחלת | לא מוגדרת |
סטיית תקן | לא מוגדרת |
חציון | |
ערך שכיח | |
שונות | לא מוגדרת |
אנטרופיה | |
פונקציה יוצרת מומנטים (mgf) | לא מוגדרת |
צידוד | לא מוגדר |
גבנוניות | לא מוגדרת |
התפלגות קוֹשִי (Cauchy), על שם המתמטיקאי הצרפתי אוגוסטן לואי קושי, היא התפלגות רציפה בעלת חשיבות במתמטיקה ובמספר תחומים בפיזיקה. בקרב פיזיקאים ההתפלגות מכונה לעיתים פילוג לורנץ (Lorentz), פילוג ברייט-ויגנר (Breit-Wigner) או לורנציאן.
הגדרה[עריכת קוד מקור | עריכה]
התפלגות קושי מוגדרת כהתפלגות רציפה בעלת פונקציית צפיפות ההסתברות
כאשר הוא פרמטר מיקום, אשר קובע את החציון של ההתפלגות, ואילו הוא פרמטר סקלה, אשר קובע את רוחב ההתפלגות.
תכונות[עריכת קוד מקור | עריכה]
תכונה יוצאת דופן של התפלגות קושי היא שהתוחלת והשונות שלה אינם מוגדרים, כמו גם המומנטים מסדר גבוה יותר. לעומת זאת, החציון והשכיח מוגדרים ושניהם שווים .
התפלגויות | ||
---|---|---|
התפלגויות בדידות כלליות | אחידה בדידה • בינומית • מולטינומית • בינומית שלילית • ברנולי • גאומטרית • היפרגאומטרית • היפרגאומטרית שלילית • מנוונת • פואסון | |
התפלגויות רציפות כלליות | אחידה רציפה • בטא • גמא • לוג-נורמלית • מעריכית (אקספוננציאלית) • נורמלית (גאוסית) • לפלס • משולשת • פארטו • ריילי • קושי • כי בריבוע | |
התפלגויות בפיזיקה סטטיסטית | בולצמן • בוז-איינשטיין • מקסוול-בולצמן • פרמי-דיראק • זטא | |
התפלגויות נוספות | התפלגות t • התפלגות F • ארלנג • וייבול • לוגיסטית | |
סוגי התפלגויות | בדידה • רציפה • מותנית • נורמלית מוכללת • זנב עבה • לא פריקה • משותפת |
קישורים חיצוניים[עריכת קוד מקור | עריכה]
- התפלגות קושי, באתר אנציקלופדיה למתמטיקה (באנגלית)
- התפלגות קושי, באתר MathWorld (באנגלית)
- התפלגות קושי, באתר אנציקלופדיה בריטניקה (באנגלית)