לדלג לתוכן

תורת המספרים

מתוך ויקיפדיה, האנציקלופדיה החופשית

תורת המספרים היא ענף של המתמטיקה העוסק בתחום רחב של נושאים, ששורשיהם בחקר התכונות של המספרים הטבעיים.

בעיות רבות בתורת המספרים הן קלות לניסוח אך קשות מאוד לפתרון, וענפים נכבדים במתמטיקה מודרנית פותחו תוך ניסיון לפתור בעיות מסוג זה. דוגמה ידועה היא המשפט האחרון של פרמה, ובעיות שהן עדיין פתוחות כמו השערת גולדבך (כל מספר זוגי הגדול מ-2, הוא סכום של שני ראשוניים), השערת הראשוניים התאומים (שלפיה יש אינסוף זוגות של ראשוניים שההפרש ביניהם הוא 2) והשערת מספרי מרסן הראשוניים (שלפיה יש אינסוף מספרי מרסן ראשוניים וכתוצאה מכך קיימים אינסוף מספרים משוכללים).

אף שרבות מהבעיות הוותיקות והקשות הללו לא מצאו עדיין את פתרון יש בחלקן התקדמות רבה, למשל בעניין השערת גולדבך הוכיח צ'ן ג'ינגרון כבר ב-1966 שכל מספר זוגי גדול דיו הוא סכום של מספר ראשוני ומספר בעל 2 מחלקים ראשוניים בלבד לכל היותר. גם בעניין השערת הראשוניים התאומים הוא התקדם בהוכיחו שלכל מספר שלם זוגי חיובי h, ישנם אינסוף ראשוניים p כך ש-p + h אף הוא בעל 2 מחלקים ראשוניים בלבד לכל היותר.[1] להשערה זו תרמו מכוון אחר גם טרנס טאו וג'יימס מיינרד (אנ') בהוכיחם שיש אין סוף זוגות ראשוניים שההפרש ביניהם הוא מספר זוגי קטן מ-246.[2]

תחומים בתורת המספרים

[עריכת קוד מקור | עריכה]

ניתן לחלק את תורת המספרים לתחומים, על-פי אופי הבעיות הנדונות ושיטות הפתרון.

בתורת המספרים האלמנטרית נחקרות תכונותיהם של המספרים השלמים ללא ניצולן של טכניקות מענפי מתמטיקה אחרים. שאלות הקשורות להתחלקות, האלגוריתם של אוקלידס למציאת מחלק משותף מקסימלי, פירוק לגורמים ראשוניים, מספרים משוכללים וסדרות חשבוניות נמצאות בתחום זה. משפטים מרכזיים הם המשפט הקטן של פרמה ומשפט אוילר המכליל אותו, משפט השאריות הסיני, ומשפט ההדדיות הריבועית. נלמדות גם פונקציות אריתמטיות, כמו הפונקציה (פי) של אוילר, שהן פונקציות המוגדרות על-פי תכונות מספריות.

תורת המספרים האנליטית משתמשת בכלים של חשבון אינפיניטסימלי ופונקציות מרוכבות כדי להתמודד עם בעיות העוסקות בתכונותיהם של המספרים השלמים. כלים אלה הם שימושיים ביותר בחקר תכונותיהם של המספרים הראשוניים: משפט המספרים הראשוניים, משפט מרכזי המתאר את צפיפותם של מספרים אלה, הוכח באמצעות כלים אנליטיים, וכמוהו גם תוצאות רבות אחרות הקשורות בראשוניים (ב-1949 מצאו פאול ארדש ואטלה סלברג הוכחה 'אלמנטרית' למשפט המספרים הראשוניים; הוכחה זו אינה משתמשת בכלים אנליטיים, אבל היא נחשבת למסובכת וקשה יותר מן ההוכחה האנליטית). השערת רימן היא בעיה פתוחה חשובה שצמחה מתורת המספרים האנליטית, ובעיות פתוחות כמו השערת גולדבך נחקרות באמצעים דומים.

ענף חשוב אחר בתורת המספרים האנליטית הוא תורת הקירובים הדיופנטיים, העוסקת בקירובים רציונליים למספרים אי-רציונליים ומאפשרת לחקור את הפתרונות השלמים של משוואות כגון .

תורת המספרים האלגברית עוסקת בשלמים אלגבריים שהם הכללה של המספרים השלמים הרגילים: מספרים כמו או הם שלמים אלגבריים. למספרים אלה יש, בהנחות מסוימות, תכונות דומות למספרים השלמים הרגילים, וניתן בעזרתם לתקוף ביתר-קלות בעיות בתורת המספרים.

בגאומטריה אלגברית אריתמטית חוקרים בעיות בתורת המספרים בכלים המשלבים גאומטריה ואלגברה. האובייקטים העיקרים הנחקרים בתחום הם סכימות אריתמטיות. בתחום זה נודעת חשיבות מיוחדת לחקר עקומים אליפטיים והנקודות השלמות והרציונליות עליהם; ההוכחה של ויילס למשפט האחרון של פרמה שייכת לתחום זה. השם תורת המספרים הגאומטרית (או גאומטריה של מספרים) מתייחס לתחום קלאסי יותר, בעיקר התורה של מינקובסקי הדנה בגאומטריה של סריגים.

תורת המספרים החישובית עוסקת בחקר אלגוריתמים הרלוונטיים לתורת המספרים. לאלגוריתמים לבדיקה מהירה האם מספר נתון הוא מספר ראשוני ולפירוק לגורמים חשיבות גדולה בקריפטוגרפיה, תחום שהפך את תורת המספרים מענף עיוני לענף שימושי ביותר.

תורת המספרים האדיטיבית עוסקת בשאלות ובעיות בתורת המספרים המבקשות להציג מספר כסכום של מספרים מקבוצה נתונה. (למשל מספרים מקבוצת ה[ראשוניים] בהשערת גולדבך ומספרים מקבוצת החזקות בבעיית ווארינג)

תורת המספרים ההסתברותית מיישמת שיטות של הסתברות לתורת המספרים, בעיקר לגבי מספר הגורמים הראשוניים של מספר. ממייסדי תורה זו היה פאול ארדש.

המספרים הטבעיים מלווים את האדם משחר התרבות. לא ידוע מתי בדיוק נולד העניין בשאלות "מופשטות" הקשורות במספרים, שאלות שאינן קשורות ישירות בספירת עצמים. טבלאות בבליות קדומות, מהתקופה שבין 1900 ל-1600 לפנה"ס, דנות בשלשות פיתגוראיות, דהיינו מספרים שלמים המקיימים את התנאי . טבלה מפורסמת בשם פלימפטון 322 שנחשבה בתחילה כמכילה רישום עסקאות מסחריות, היא למעשה רשימה מסודרת ומדויקת למדי של שלשות כאלה, אם כי אין זה ודאי שלכך הבבלים כיוונו.

תורת המספרים זכתה לפריחה ביוון הקדומה, במיוחד בעבודותיהם של פיתגורס, אוקלידס ודיופנטוס.

תורמים בולטים לפיתוחו של ענף זה בעת החדשה הם פרמה, אוילר וגאוס.

לקריאה נוספת

[עריכת קוד מקור | עריכה]
  • G.H. Hardy; E.M. Wright (2008) [1938]. An introduction to the theory of numbers (rev. by D.R. Heath-Brown and J.H. Silverman, 6th ed.). Oxford University Press. ISBN 978-0-19-921986-5.
  • Vinogradov, I.M. (2003) [1954]. Elements of Number Theory (reprint of the 1954 ed.). Mineola, NY: Dover Publications.

קישורים חיצוניים

[עריכת קוד מקור | עריכה]

הערות שוליים

[עריכת קוד מקור | עריכה]
  1. ^ Chen, J.R. (1973). "On the representation of a larger even integer as the sum of a prime and the product of at most two primes". Sci. Sinica. 16: 157–176.
  2. ^ "Bounded gaps between primes". Polymath (michaelnielsen.org). Retrieved 2014-03-27.