צירוף לינארי

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

באלגברה לינארית, צירוף לינארי הוא סכום של מספר סופי של וקטורים שכל אחד מהם מוכפל בסקלר. בגלל סגירותו של המרחב הווקטורי ביחס לחיבור וכפל בסקלר, הצירוף הלינארי אף הוא וקטור השייך לאותו מרחב וקטורי. בהינתן קבוצה מתאימה של וקטורים - קבוצה פורשת - ניתן לכתוב כל וקטור במרחב כצירוף לינארי של איברים מתוך הקבוצה.

מבחינה פורמלית, צירוף לינארי מוגדר כך. בהינתן סדרה \,v_1,v_2,...,v_k של וקטורים במרחב, וסדרה \,\alpha_1,\alpha_2,...,\alpha_k של סקלרים, נקרא לביטוי

\,\alpha_1 v_1+\alpha_2 v_2+...+\alpha_k v_k

צירוף לינארי של הווקטורים. בקיצור ניתן לכתוב \sum_{i=1}^{k}\alpha_i v_i

קבוצה תיקרא תלויה לינארית אם קיים בה וקטור שהוא צירוף לינארי של וקטורים אחרים מהקבוצה. או באופן שקול, קבוצה היא תלויה לינארית אם קיים צירוף לינארי לא טריוויאלי של איבריה (לא כל הסקלרים אפס) ששווה לווקטור האפס.

בהתאם לכך וקטור האפס יהיה תמיד צירוף לינארי של כל קבוצת וקטורים, וכשהוא יינתן בתוך קבוצה אזי הקבוצה תהיה תלויה לינארית.