קבוצה פורשת

מתוך ויקיפדיה, האנציקלופדיה החופשית

קבוצה פורשת (או קבוצת יוצרים) היא קבוצת וקטורים שבאמצעותם ניתן להציג כצירוף ליניארי את כל ואך ורק וקטורים במרחב הנפרש.

קבוצת כל הצירופים הליניאריים של איברי קבוצת וקטורים נתונה מסומנת ב- (קיצור של המילה Span, פרישה באנגלית. לפעמים כותבים בפירוש ). ניתן להראות שקבוצה זו תמיד מקיימת את אקסיומות המרחב הווקטורי, ולכן ניתן לדבר על "המרחב הנפרש על ידי הקבוצה ". בהתאם לכך, פורשת את אם ורק אם .

קבוצה פורשת מינימלית, או קבוצה פורשת בלתי תלויה, מהווה בסיס למרחב הווקטורי. אם משמיטים מקבוצה כזו וקטור אחד (או יותר), היא כבר לא פורשת. אם קבוצה זו אינה מינימלית אז קיים בקבוצה וקטור שניתן להצגה כצירוף ליניארי של האחרים ולכן היא תלויה ליניארית.

דוגמאות[עריכת קוד מקור | עריכה]

  • הקבוצה פורשת את קבוצת המספרים הממשיים, מפני שכל מספר ממשי הוא צירוף ליניארי שלה (כי לכל מספר ממשי קיים כך שמתקיים ). בדומה, כל קבוצה של מספרים ממשיים – למעט הקבוצה הריקה ויחידון האפס () – פורשת את קבוצת כל המספרים הממשיים ׁ(אבל לאו דווקא פורשת מינימלית). למשל: , המספרים הטבעיים או הן כולן קבוצות אשר פורשות את המספרים הממשיים.
  • הקבוצה פורשת את המרחב , כי לכל , קיים כך שמתקיים .

בהתאם לדוגמאות שלעיל נוכל לסמן:

  • .

אינטואיציה[עריכת קוד מקור | עריכה]

נתבונן במערכת צירים הקרטזית הדו-ממדית במישור. למעשה זו מערכת המתוארת על ידי שני הווקטורים (1,0) ו-(0,1) אשר פורשים את כל המישור: כל וקטור ניתן לכתוב כצירוף ליניארי של שני וקטורי היחידה האלה. אמנם, על אף שהכי נוח להשתמש במערכת צירים זו, אין זו מערכת הצירים היחידה שפורשת את המישור, למעשה כל זוג וקטורים שאינם תלויים ליניארית יכולים לפרוס את המישור. אם הווקטורים תלויים ליניארית, הם "יושבים" על אותו ישר ולכן אינם יכולים לפרוס את המישור.

אפשר לתת משל ממכונית על שלט: דמיינו לעצמכם שיש לכם מכונית על שלט בעלת מקש שליטה אחד. לעולם לא אפשר יהיה להגיע איתה לכל מקום על מרחב הרצפה, כי השליטה בה היא רק האם להזיז את המכונית קדימה ואחורה. לעומת זאת, אם נוסיף למכונית עוד כפתור שליטה שנע הצידה, נקבל שליטה בשני וקטורי כיוון שאינם תלויים ליניארית ובעזרתם נוכל להגיע (אם נקיש את "הצירוף ליניארי" הרצוי) לכל מקום ברצפה.

כעת, דמיינו לעצמכם שכפתור השליטה השני אינו פונה ימינה ושמאלה אלא מקבל זווית מסוימת, שינוי זה אולי יסרבל את השליטה במכונית, אבל לא ישנה את העובדה שהמכונית תוכל להגיע לכל נקודה שתבחרו (עם צירוף ליניארי אחר). רק במקרה שהכפתור השני ישלוט גם הוא על ההתקדמות קדימה או אחורה (אפילו אם יש לו רגישות שונה) לא נוכל לפרוש את המרחב, כי הווקטורים תלויים ליניארית.

עתה נרחיב את מושג הפריסה למערכת מרובת ממדים, אם למשל יש לנו רחפן, נצטרך עוד כפתור שליטה, כי רחפן הוא יצור תלת ממדי ולכן הוא צריך 3 וקטורים שונים כדי לפרוס את המרחב. בהכללה, כל מרחב ממימד n צריך n וקטורים בלתי תלויים ליניארית כדי לפרוס אותו ולהוות לו בסיס.

לקריאה נוספת[עריכת קוד מקור | עריכה]

  • Lankham, Isaiah; Nachtergaele, Bruno; Schilling, Anne (13 בפברואר 2010). "Linear Algebra - As an Introduction to Abstract Mathematics" (PDF). University of California, Davis. נבדק ב-27 בספטמבר 2011. {{cite web}}: (עזרה)
  • Brian P. Rynne & Martin A. Youngson (2008). Linear Functional Analysis, page 4, Springer ISBN 978-1848000049.

קישורים חיצוניים[עריכת קוד מקור | עריכה]