בוזוני W ו-Z

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
בוזוני W ו-Z
הרכב: חלקיק יסודי
סטטיסטיקה: בוזון
קבוצת שיוך: בוזון כיול
חלקיק: בוזוני W ו-Z
תכונות
מסת מנוחה: kg
m_W=‎80.4×103MeV/c2;
m_Z=‎91.2×103MeV/c2
מטען חשמלי: qz=0; qw+=e; qW=‎− e
ספין: ‎1 ħ
מטען צבע: 0
אינטראקציות: הכוח הגרעיני החלש
היסטוריה
נצפה? כן
שנת גילוי: 1983

בוזוני W ו-Z הם חלקיקים יסודיים הנושאים את הכוח הגרעיני החלש. חלקיקים אלו נחזו על ידי המודל הסטנדרטי בפיזיקת החלקיקים והתגלו באופן ניסיוני ב-CERN בשנת 1983.

בוזון W נקרא על שם הכוח הגרעיני החלש (weak). נאמר שחלקיק Z נקרא כך משום שהוא החלקיק האחרון שנותר לגלותו, והאות Z היא האחרונה באלפבית האנגלי. הסבר אחר הוא שבוזון Z קיבל את שמו מהסיבה שמטענו החשמלי הוא אפס (zero).

תכונות בסיסיות[עריכת קוד מקור | עריכה]

ישנם שני סוגי בוזוני W, אחד בעל מטען חשמלי +1 והשניבעל מטען חשמלי -1; הבוזון W+ הוא האנטי-חלקיק של ה-W. בוזון Z (או Z0) הינו נייטרלי מבחינה חשמלית והוא האנטי-חלקיק של עצמו. כל שלושת החלקיקים מתקיימים לזמן קצר מאוד, מסדר גודל של ‎3×10-35‎ שניות.

הבוזונים הללו כבדים באופן יחסי לשאר החלקיקים היסודיים. עם מסה של 80.4 ו-91.2 GeV/c2, בהתאמה, מסתם של בוזוני W ו-Z גדולה פי 100 משל הפרוטון - וכבדה יותר מאטום הברזל. מסתם של בוזוני W ו-Z חשובה מכיוון שהיא מגבילה את טווח הכוח הגרעיני החלש. לכוח האלקטרומגנטי, לעומת זאת, יש טווח אינסופי מכיוון שלבוזון שלו (הפוטון) אין מסה כלל.

הכוח הגרעיני החלש[עריכת קוד מקור | עריכה]

בוזוני W ו-Z הם הנשאים של הכוח הגרעיני החלש, כמו שהפוטון הוא נשא הכוח האלקטרומגנטי. בוזון W ידוע בעיקר בגלל תפקידו בהתפרקות גרעינית. לדוגמה התפרקות של קובלט-60, תהליך חשוב בהתפוצצויות סופרנובות ופצצות נייטרון:

{}^{60}_{27}\hbox{Co}\to{}^{60}_{28}\hbox{Ni}+\hbox{e}^-+\overline{\nu}_e

התגובה אינה מערבת את כל הנוקליאונים של הקובלט-60, אלא משפיעה רק על אחד מ-33 הנייטרונים שלו. נייטרון זה הופך לפרוטון, ובו בזמן גם פולט אלקטרון (הנקרא חלקיק בטא בהקשר זה), ואנטי-נייטרינו:

\hbox{n}\to \hbox{p}+\hbox{e}^-+\overline{\nu}_e

שוב, הנייטרון אינו חלקיק יסודי אלא שילוב של קווארק למעלה אחד (U) ושני קווארק למטה (D), שילוב שנהוג לכתוב כך: UDD. למעשה, אחד מהקווארקי למטה הוא זה המתרכב בקרינת בטא, בהופכו לקווארק למעלה ובכך יוצר פרוטון - UUD. ברמה הבסיסית ביותר, אם כך, הכוח הגרעיני החלש משנה את טעמו של קווארק יחיד:

\hbox{d}\to\hbox{u}+\hbox{W}^-

ומיד אחר-כך באה ההתפרקות של ה-W עצמו:

\hbox{W}^-\to\hbox{e}^-+\overline{\nu}_e

בכך שהוא האנטי-חלקיק של עצמו, כל הערכים הקוונטיים של בוזון Z הם אפס. משום כך, העברה של בוזון Z בין חלקיקים, הקרויה בשם זרם נייטרלי, משאירה אותם ללא שינוי, מלבד העברת מומנטום. שלא כמו קרינת בטא, צפייה באינטראקציות זרם נייטרלי צורכת השקעה אדירה במאיצי חלקיקים ובחיישנים, הנמצאים בהישג יד רק במספר מועט של מעבדות בעולם העוסקות בפיזיקה באנרגיות גבוהות.

חיזוי הבוזונים[עריכת קוד מקור | עריכה]

בהמשך להצלחה המדהימה של האלקטרודינמיקה הקוונטית בשנות ה-50, נעשו מאמצים ליצור תאוריה דומה לכוח הגרעיני החלש. מאמץ זה הגיע לשיא בשנת 1968 בתאוריה מאוחדת של הכוח האלקטרומגנטי והכוח החלש, כפי שנוסחה על ידי שלדון גלאשו, סטיבן ויינברג ועבדוס סלאם, שזכו על כך בפרס נובל לפיזיקה. התאוריה האלקטרו-חלשה שלהם דרשה לא רק את קיומו של בוזון W, שהיה צריך להיות קיים כדי להסביר את התפרקות הבטא, אלא גם את התקיימות בוזון Z חדש, שטרם נצפה עדיין.

העובדה שלבוזוני W ו-Z יש מסה בעוד שלפוטונים אין הייתה אבן דרך חשובה בפיתוח התאוריה האלקטרו-חלשה. חלקיקים אלו מתוארים במדויק בתורת הכיול (SU(2, אך בוזונים בתורת כיול חייבים להיות נטולי מסה. כך לדוגמה, לפוטון אין מסה כתוצאה מכך שהאלקטרומגנטיות מתוארת על ידי תורת כיול (1)U. דרושה מכניקה מסוימת כדי לשבור את סימטריית תורת הכיול (SU(2 בכל הנודע לבוזוני W ו-Z על-מנת לתת להם מסה. הסבר אחד, מכניקת היגס, הוצע על ידי ברוט ואנגלר וקודמה על ידי פיטר היגס בשנות ה-60 המאוחרות. מכניקה זו מנבאת את קיומו של חלקיק נוסף, בוזון היגס.

השילוב של תיאורית הכוח (SU(2 של הכוח החלש, הכוח האלקטרומגנטי ומכניקת היגס ידועה בשם מודל גלאשו-ויינברג-סלאם. בימים אלו המודל מקובל בתור אחד מעמודי התווך של המודל הסטנדרטי של פיזיקת החלקיקים.

גילוי W ו-Z[עריכת קוד מקור | עריכה]

גילוי בוזוני W ו-Z הוא סיפור הצלחה גדול שניתן לזקוף לזכותן של מעבדות CERN. בתחילה, בשנת 1973, הגיע החיזוי של הזרם הנייטרלי על ידי התאוריה האלקטרו-חלשה. תא בועות אדיר ב-CERN, גרגמל שמו, צילם את מסלוליהם של כמה אלקטרונים שלפתע פתאום החלו לנוע בהתאמה. דבר זה פוענח כנייטרינו המגיב עם האלקטרון בהעברת בוזון Z בלתי נראה. אלמלא כך, הנייטרינו היה בלתי ניתן לגילוי, כך שההשפעה הנראית היחידה היא העברת המומנטום לאלקטרון.

גילוי חלקיקי ה-W וה-Z עצמם נאלץ לחכות לבנייתו של מאיץ חלקיקים חזק דיו כדי ליצור אותם. המכונה הראשונה מסוג זה שהייתה מוכנה לפעולה הייתה ה-SPS, היכן שאותות בוזון W ברורים נקלטו בינואר 1983 במהלך סדרת ניסויים שנוהלו על ידי קארלו רוביאה וסיימון ואן-דר-מר. הניסויים גילו את בוזון Z מספר חודשים מאוחר יותר, במאי 1983. רוביאה וואן-דר-מר זכו בפרס נובל לפיזיקה.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

המודל הסטנדרטי של פיזיקת החלקיקים
בוזונים פרמיונים
קווארקים
Photon.svg
פוטון
Up quark.svg
למעלה
Charm quark.svg
קסום
Top quark.svg
עליון
Gluon.svg
גלואון
Down quark.svg
למטה
Strange quark.svg
מוזר
Bottom quark.svg
תחתון
לפטונים
Z boson.svg
בוזון
Z
Electron neutrino.svg
נייטרינו
אלקטרוני
Muon neutrino.svg
נייטרינו
מיואוני
Tau neutrino.svg
נייטרינו
טאואוני
W boson.svg
בוזון W
Electron.svg
אלקטרון
Muon.svg
מיואון
Tau lepton.svg
טאו
Higgs boson.svg
בוזון
היגס