קבוצות זרות

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
דיאגרמת ון של שתי קבוצות זרות: A ו-B

במתמטיקה, זוג קבוצות הן זרות אם אין להן איבר משותף. לדוגמה, {1, 2, 3} ו-{4, 5 ,6} הן קבוצות זרות.

הסבר[עריכת קוד מקור | עריכה]

על פי ההגדרה, זוג קבוצות A ו B הן זרות אם החיתוך שלהן הוא הקבוצה הריקה, כלומר אם מתקיים:

A\cap B = \varnothing\,

עבור כל אוסף של קבוצות מוגדר כי הקבוצות באוסף הן זרות בזוגות אם כל זוג קבוצות (שונות) באוסף הוא זר, כלומר לכל זוג אינדקסים שונים, i ו-j , מתקיים:

A_i \cap A_j = \varnothing\,

לדוגמה, הקבוצות באוסף הקבוצות הבא { {1}, {2}, {3}, ... } הן זרות בזוגות.

אם {Ai} הוא אוסף קבוצות זרות בזוגות אז החיתוך שלו הוא ריק,

\bigcap_{i\in I} A_i = \varnothing

לעומת זאת, הכיוון ההפוך אינו נכון: החיתוך של האוסף {{1, 2}, {2, 3}, {3, 1}} הוא ריק, אך הקבוצות בו אינן זרות בזוגות, למעשה אין שום זוג קבוצות זרות באוסף.

חלוקה של קבוצה היא פרוק של הקבוצה לאוסף של תתי קבוצות זרות שאיחודן הוא הקבוצה עצמה.

ראו גם[עריכת קוד מקור | עריכה]