|
יש לשכתב ערך זה. ייתכן שהערך מכיל טעויות, או ש הניסוח ו צורת הכתיבה שלו אינם מתאימים.
|
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף. ייתכן שתמצאו פירוט בדף השיחה.
|
|
יש לשכתב ערך זה. ייתכן שהערך מכיל טעויות, או שהניסוח וצורת הכתיבה שלו אינם מתאימים.
|
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף. ייתכן שתמצאו פירוט בדף השיחה.
|
אנרגיה פנימית הוא גודל בתרמודינמיקה שמתאר את האנרגיה של מערכת תרמודינמית. מסומן בדרך כלל באות , ולעיתים באות .
האנרגיה הפנימית כוללת את האנרגיה הבלתי מסודרת של המערכת, כלומר את האנרגיה הקינטית של חלקיקים יחסית למרכז המסה של הגוף (אנרגיה תרמית), או את האינטראקציות בין החלקיקים השונים שמרכיבים את המערכת (כמו אינטראקציה חשמלית בין החלקיקים, או קשרים כימיים). היא לא כוללת אנרגיה קינטית או פוטנציאלית של הגוף כולו.
נכון לרגע זה, לא ניתן לחשב את האנרגיה הפנימית בכל מצב כלשהו אך ניתן לחשב את שינוי האנרגיה הפנימית שעובר הגוף בין 2 מצבים (הפרש האנרגיה הפנימית שהייתה לגוף אחרי פעולה לאנרגיה הפנימית שהייתה לו לפני).
לפי החוק הראשון של התרמודינמיקה הנוסחה היא כאשר הוא סך כל העבודות של הגוף (בג'ול) ו- הוא סך אנרגיית החום של הגוף (בג'ול).
היחידות של האנרגיה הפנימית הן יחידות של אנרגיה (ג'ול, ארג, או קלוריה – שהיא יחידת האנרגיה ההיסטורית בה השתמשו בתרמודנימיקה), והיא גודל אקסטנסיבי.
האנרגיה הפנימית היא הפוטנציאל התרמודינמי שהמשתנים הטבעיים שלו הם האנטרופיה הנפח , ומספר החלקיקים , כלומר הוא מתאים למקרה של מערכת מבודדת תרמית, עם נפח קבוע. מבחינה מתמטית דבר זה מובע על ידי:
הביטוי עבור הדיפרנציאל של האנרגיה הפנימית הוא למעשה הצורה הדיפרנציאלית של החוק הראשון של התרמודינמיקה, שהוא חוק שימור האנרגיה עבור מערכות תרמודינמיות:
- .
מביטוי זה ניתן לחשב את:
הטמפרטורה –
|
,
|
הלחץ –
|
,
|
הפוטנציאל הכימי –
|
.
|
הדיפרנציאל של האנרגיה הפנימית, שכאמור נובע מהחוק הראשון של התרמודינמיקה, הוא הבסיס שממנו בעזרת טרנספורמי לז'אנדר ניתן לקבל את הביטויים עבור הדיפרנציאלים של שאר הפוטנציאלים התרמודינמיים, ואת הפוטנציאלים עצמם. למרות זאת, מאחר שהתנאים של מערכת מבודדת תרמית עם נפח קבוע אינם נפוצים במערכות תרמודינמיות, מושג האנרגיה הפנימית פחות שימושי מהפוטנציאלים התרמודינמיים האחרים.
במכניקה סטטיסטית האנרגיה הפנימית מהווה מרכיב חשוב במעבר מהצבר הקנוני לגדלים התרמודינמיים. כאשר נתון צבר קנוני של מערכת תרמודינמית, האנרגיה הפנימית שלה מחושבת על ידי ממוצע על הצבר:
כאשר:
- – האנרגיה של מצב מיקרוסקופי בו כל אחד מהחלקיקים המרכיבים את הצבר יכול להיות בו
- הסיכוי של חלקיק להיות במצב המיקרוסקופי
כאשר מגדירים את פונקציית החלוקה –
מקבלים:
ביטוי זה אומנם לא נותן את האנרגיה הפנימית כפונקציה של המשתנים הטבעיים שלה, אלא של הטמפרטורה במקום האנטרופיה. אולם ניתן ממנו להגיע לביטוי עבור האנרגיה החופשית של הלמהולץ כפונקציה של המשתנים הטבעיים שלו.
כאשר רמות האנרגיה של כל חלקיק אינן תלויות ברמות האנרגיה של חלקיקים אחרים, אפשר לכתוב את פונקציית החלוקה כמכפלה של פונקציות חלוקה נפרדות עבור כל אחד מהחלקיקים (עד כדי חלוקה בעצרת של מספר החלקיקים הזהים – גורם שמשפיע על האנטרופיה, ועל האנרגיה החופשית, אבל לא על האנרגיה הפנימית). דבר זה מאפשר לפרק את האנרגיה לסכום האנרגיות של החלקיקים השונים (כצפוי מגודל אקסטנסיבי), ואף לפרק לסכום האנרגיות בדרגות החופש השונות עבור כל חלקיק (דרגות החופש המרחביות השונות, וגם דרגות חופש של רוטציה וויברציה).
כיוון שמדובר בביטוי עבור ממוצע של התפלגות, יש לו גם סטיית תקן, שהמימוש הפיזיקאלי שלה המכונה פלקטואציה. היא נתונה על ידי:
- .
מכיוון שהאנרגיה הפנימית היא גודל אקסטנסיבי, והטמפרטורה היא גודל אינטנסיבי, האנרגיה הפנימית גדלה באופן ליניארי עם מספר החלקיקים, אבל הפלקטואציה גדלה רק יחסית לשורש מספר החלקיקים, כך שבגבול התרמודינמי הפלקטואציה זניחה ברוב המקרים.
תרמודינמיקה
|
חוקי יסוד
|
חוקי שימור (החומר, האנרגיה) • חוקי התרמודינמיקה: אפס, ראשון, שני (ראו גם: תנועה נצחית, השד של מקסוול), שלישי
|
קבועים
|
קבוע הגזים • קבוע בולצמן • קבוע אבוגדרו • קבוע פלאנק
|
משתנים
|
אינטנסיבים (טמפרטורה, לחץ, פוטנציאל כימי) • אקסטנסיבים (אנטרופיה, נפח, מספר חלקיקים) • משוואת מצב
|
יחידות מידה
|
טמפרטורה (צלזיוס, קלווין, יח' אחרות) • נפח (ליטר, מטר מעוקב) • לחץ (בר, אטמוספירה, פסקל) • מספר חלקיקים (מול) • אנרגיה (ג'אול, קלוריה)
|
אפיון
|
הפיכות • שינוי האנתלפיה (תהליך אקסותרמי, תהליך אנדותרמי) • שינוי באנרגיה (תהליך ספונטני, תהליך מאולץ) • תהליך (איזוברי, איזותרמי, איזוכורי, אדיאבטי, איזנטרופי, איזואנתלפי)
|
פוטנציאלים תרמודינמיים
|
אנרגיה פנימית • אנתלפיה • האנרגיה החופשית של הלמהולץ • האנרגיה החופשית של גיבס
|
מצבי צבירה ומעברי פאזות
|
מצבי צבירה (מוצק, נוזל, גז) • מעברי פאזות (התכה, התאדות, המראה, התעבות, הקפאה) • נקודת התכה • נקודת רתיחה • נקודה משולשת • נקודה קריטית • דיאגרמת פאזות • משוואת קלאוזיוס-קלפרון • חוק הפאזות של גיבס
|
גזים
|
גז אידיאלי • גז ואן דר ואלס • התאוריה הקינטית של הגזים • לחץ חלקי • חוק ראול • מודל דלטון • חוק בויל-מריוט • חוק גה-ליסאק • חוק שארל• משוואת הגז האידיאלי
|
חום וטמפרטורה
|
האפס המוחלט • יח' מידה לטמפרטורה • שיווי משקל תרמודינמי • קיבול חום • יחס קיבולי החום • חום כמוס • חוק הס • קלורימטר • אפקט ג'ול-תומסון • הסעת חום • מוליכות חום • מעבר חום • קרינה תרמית • קשר מאייר • האינדקס האדיאבטי
|
מעגלי עבודה
|
מעגלים תרמודינמיים (קרנו, סטרלינג, ברייטון, אריקסון, רנקין, סטירלינג, דיזל, לנואר, אוטו, היגרוסקופי, סקודירי, סטודרד) • נצילות
|
יישומים
|
מכונות חום • מנועים • משאבות • משאבת חום • מחליף חום • מיזוג אוויר • מקרר • קירור תרמואלקטרי • תחנות כוח
|
מונחים נוספים
|
תאוריית הקלוריק • תנועה בראונית • פונקציית מצב • תרמודינמיקה סטטיסטית • קשרי מקסוול • תרמוכימיה
|
דמויות בולטות
|
דניאל ברנולי (1700–1782) • בנג'מין תומפסון (1753–1814) • סאדי קרנו (1796–1832) • אמיל קלפרון (1799–1874) • רוברט מאייר (1814–1878) • ג'יימס ג'ול (1818–1889) • ויליאם ג'ון מקורן רנקין (1820–1872) • הרמן פון הלמהולץ (1821–1894) • רודולף קלאוזיוס (1822–1888) • ויליאם תומסון (1824–1907) • ג'יימס קלרק מקסוול (1831–1879) • יוהנס דידריק ואן דר ואלס (1837–1923) • ג'וסיה וילארד גיבס (1839–1903) • לודוויג בולצמן (1844–1906) • מקס פלאנק (1858–1947) • פייר דוהם (1861–1916) • קונסטנטין קרתיאודורי (1873–1950) • לארס אונסגר (1903–1976)
|